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Several databases have been compiled with the aim of documenting the distribu-
tion of typological features across the world’s languages. -is paper looks at ways 
of utilizing this type of data for making inferences concerning genealogical re-
lationships by using phylogenetic algorithms originally developed for biologists. 
-e focus is on methodology, including how to assess the stability of individual 
typological features and the suitability of di.erent phylogenetic algorithms, as 
well as ways to enhance phylogenetic signals and heuristic procedures for iden-
tifying genealogical relationships. -e various issues are illustrated by a small 
sample of empirical data from a set of Native American languages.
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0. Introduction

-is paper will focus on methodological issues involved in drawing inferences 
concerning genetic relatedness from typological data. We mainly look at ways 
of detecting vertical inheritance, although we do not wish thereby to imply that 
lateral di.usion via language contact is not an equally important issue or that it 
could not be addressed through related procedures. We do not attempt to derive 
empirical conclusions concerning actual historical relations, but simply wish to 

* We would like to acknowledge comments from Bernard Comrie, Joseph Felsenstein, Cecil H. 
Brown, and Sean Crist on an earlier version of this paper, as well as comments from Marianne 
Mithun on an oral presentation at the 17th International Conference on Historical Linguistics, 
Madison, August 2005. Special thanks go to Melanie Keledjian for help with translations of the 
summary.



374 Søren Wichmann and Arpiar Saunders

summarize the results of an initial exploration of the application of phylogenetic 
methods and techniques to a typological dataset. -e dataset used is !e World 
Atlas of Language Structures (Haspelmath et al., eds., henceforth WALS). For il-
lustrative purposes we draw upon a small subset of WALS data from the native 
languages of the Americas.1

We /rst discuss some similarities between our approach to phylogenetics and 
approaches in biology and brie0y comment on the currently available phyloge-
netic programs that seem most useful for historical linguistic purposes. We then 
go on to discuss one of the most pressing problems encountered in using typologi-
cal databases to infer genealogies, namely, which typological features to use. -en 
we discuss the use of four di.erent types of algorithms for inferring phylogenies as 
well as methods for enhancing phylogenetic signals. Finally, we demonstrate how 
lexical data reinforcing known, shallow genetic relations may be used to enhance 
the heuristic value of a phylogeny generated from typological data.

Only during the last decade have serious attempts been made to study evo-
lutionary relationships of languages using computationally driven phylogenetic 
approaches. -e pioneering (and controversial) works of Russell D. Gray and col-
leagues di.er from the present contribution by drawing uniquely upon lexical data 
(Gray & Fiona 2000, Gray & Atkinson 2003), as do other recent contributions 
(Forster et al. 1998, Forster & Toth 2003, Holden 2002, McMahon & McMahon 
2003, McMahon et al. 2005, Atkinson et al. 2005, Cysouw et al. 2006). Don Ringe, 
Tandy Warnow and associates have assembled sets of not only lexical characters 
but also phonological ones (for Indo-European) and have subjected them to rigor-
ous phylogenetic analyses using computational algorithms (Warnow 1997, Nakleh, 
Ringe & Warnow 2005, Nakleh, Warnow, Ringe & Evans 2005). Much of this work 
has focused on the development of the model of so-called ‘perfect phylogenies’. In 
such phylogenies, all — or at least the great majority — of the linguistic characters 
selected are compatible with a single evolutionary tree. -at is, cases of borrowing, 
parallel changes, and changes back to an earlier state (backmutation) are excluded 
(see Ringe, Warnow & Taylor 2002 for data). In the present paper, however, we 
shall address problems arising from using data which, because of their generic, 
typological nature, are not expected to yield perfect phylogenetic networks. -e 
type of data which we consider, have not gone through prior analysis and si1ing 
by scholars working within the framework of the traditional comparative method. 

1. In future research we hope to expand our agenda to making actual inferences regarding the 
classi/cation of these languages, since they present a special challenge to historical linguistics 
given the genetically fragmented picture according to the consensus view coupled with the 
widely accepted hypothesis that the Americas were one of the last areas in the world to be popu-
lated by humans. -e present paper, however, is purely methodological.
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-us, we use typological features, several of which may have su.ered di.usion, 
parallel changes and backmutation, but we try to identify and use features that are 
least amenable to this type of behavior and search for algorithms that minimize the 
phylogenetic noise produced by this type of data. Unlike that of Ringe, Warnow 
and colleagues, our approach is not so much a re/nement of a particular aspect 
of traditional comparative linguistics — i.e. the phylogenetic aspect — but is bet-
ter described as a new alternative based on the employment of methods adapted 
from biology. As the present paper was submitted, another relevant work, namely 
Dunn et al. (2005), appeared. -is is the /rst attempt to draw phylogenetic infer-
ences from typological data and, as such, is congenial to our approach. Our paper, 
however, complements rather than overlaps with that of Dunn et al. While the 
latter authors immediately attempt to draw empirical conclusions and largely ex-
clude the methodological considerations that have let them to make choices such 
as using parsimony methods or organizing their data as binary-valued typological 
features, we directly address such methodological issues. Several of our observa-
tions can be brought to directly bear on Dunn et al. (2005), but we defer direct 
discussion of their contribution to another context.

In the following section we brie0y review some of the productive parallels of 
phylogenies based on generic typological data vs. biological data.

1. Phylogeny in biology and in linguistics

-e wealth of new data resulting from the molecular biological revolution did 
not miraculously resolve the ancestral relationships of related organisms. Initially, 
biologists were ba2ed at contradictions between molecular data and organismal 
phylogenies established through comparative morphology and behavior. Even 
more troubling, the molecular data (i.e. DNA, RNA and Protein) were o1en in-
ternally inconsistent; the natural histories of genes and gene products di.ered 
within an organism. Biological phylogenetics had to confront the philosophical 
and methodological problem of how to resolve the evolutions of characters from 
di.erent types of data with the evolution of the organism as a whole. -e debate 
and subsequent computational solutions to this dilemma have productive applica-
tions for historical linguistics.

Building phylogenies for both organisms and languages depends on compar-
ing the states for a set of shared characters. -e hope is that by analyzing these 
di.erences with an appropriate algorithm a phylogenetic signal can be recovered 
with a quanti/able degree of certainty. In sequence based phylogeny (DNA, for 
example), each character is a linear position along the gene and the character state 
is the nucleotide building block occupying that place. Since homologous sequence 
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characters are easily de/ned, comparing them depends only on proper alignment. 
Morphological and behavioral characters must be de/ned more subjectively since 
each character and its representative character states are constructed by the re-
searcher. In de/ning characters of this type, the researcher must use their best 
judgment to assure that characters are both truly homologous (i.e. share the 
same developmental mechanism) and behave independently during evolutionary 
change. When these conditions are not met, skewed phylogenies will ensue. A /nal 
di.erence between molecular and morphological data involves the nature of the 
character state labels used for coding. With molecular sequence data, character 
states are shared across characters. For example, with DNA data, if Adenine (“A”) 
is coded as “1,” all “1’s” can be treated as a group across characters. With morpho-
logical and behavioral data, a “1” may mean “50–75mm beak depth” for the /rst 
character and “brown/black coloration” for the second. -is latter coding scheme, 
where character state labels are arbitrary, is appropriate for typological and lexical 
data. Once coded, language data can be analyzed by a wide variety of algorithms 
built for biological morphology.

Phylogenies are the result of the interaction between coded data and a speci/c 
algorithm. While the advantages of di.erent encoding schemes and algorithms are 
hotly debated among biologists, linguists have done little to systematically evaluate 
which methods, if any, are appropriate for inferring language evolution. -e re-
sults presented here represent an initial attempt to narrow down the methodologi-
cal choices faced by linguists for determining which algorithms are most appro-
priate for typological data. O1en in biological contexts, multiple algorithms are 
employed on the same dataset to demonstrate the robustness of the phylogenetic 
signal (e.g., Als et al. 2004). Here we shall employ a similar strategy in order to 
investigate the utility of WALS-type data for phylogenetic research.

Many of the most basic confounds faced by historical linguists when construct-
ing evolutionary trees, including the possibility of horizontal transfer of linguis-
tic features and di.ering rates of change for di.erent linguistic components, have 
biological counterparts. -e sophisticated methods biologists have developed to 
empirically approach these issues o.er powerful new perspectives for diachronic 
linguistics. Two languages may share the same state for a given typological feature 
through common ancestry, contact or random chance. Determining which of these 
possibilities is being instantiated requires a comparison with the behavior of other 
typological features. Is only a single state shared between the two languages or are 
there groups of shared states? And do these similarities con0ict phylogenetically 
with shared states among other languages in the sample? Biologists are confronted 
with similar problems. For example, while ancestrally related genes do accumulate 
tractable changes, genes can also be transferred horizontally between unrelated 
species. Especially rampant in the bacterial kingdom, lateral gene transfer is con-
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sidered to be a major player in evolution (Ochman, Lawrence & Groisman 2000). 
While identifying areal typological features using current biological so1ware is 
outside the scope of this study, we hope that a brief description of strategies devel-
oped by biologists may inspire historical linguists in the future.

One method compares phylogenies produced by di.erent genes of the genome. 
-e underlying logic is that a consensus of phylogenetic signals across genes under 
di.erent evolutionary constraints most accurately represents the natural history 
of the whole organism (Gri3ths 1999, Nylander et al. 2004). A second strategy, 
amenable to organisms with sequenced genomes, involves genetic comparisons 
between distantly related species; high similarity between genes not shared by 
‘intermediate’ organisms suggests the candidate genes may have been acquired 
through horizontal transfer (cf. Lawrence & Ochman 2002). A third strategy, 
similarly non-phylogenetic but intra-species, identi/es genes that appear outside 
of their genomic context (i.e. patterns of nucleotides), the logic here being that 
long-term evolution in a separate species might leave an identi/able ‘/ngerprint’ 
(cf. Lawrence & Ochman 2002). Perhaps the so1ware implementations of these 
approaches can be tuned to assess horizontal transfer of typological and lexical 
data in the future.

In addition to detecting similarities due to contact, linguists also must contend 
with heterogeneity in the rates of evolutionary change for di.erent components 
of language, including di.erent typological features. Although in practice little is 
known empirically about the rates of change for speci/c typological features, those 
with rapidly changing states may be used to infer shallow evolutionary signals, 
while features with slower rates of change may inform deeper relationships. Large 
di.erences in rates can similarly occur between di.erent regions of the genome. 
For example, DNA coding for highly conserved, essential proteins is in general less 
tolerant of mutations than non-coding, non-regulatory DNA. When character sets 
are diverse with respect to rate, one hopes for the ‘shallow’ and ‘deep’ phylogenetic 
signals to be clearly represented by the appropriate character type and for the un-
informative type to introduce only negligible noise.

Some of the more parameter-rich biological algorithms allow evolutionary 
rates to di.er between characters based on a variety of distributions. Simpler algo-
rithms do not take rate heterogeneity into account. -us, the issue of rate hetero-
geneity exempli/es an important general principle in phylogenetics: researchers 
must understand the assumptions and mechanics of their algorithms to properly 
interpret the results. Models operating on a large number of parameters provide 
the opportunity for heightened realism, while simpler models have the advantage 
of being more transparent making the resulting trees easier to interpret.

One widespread parameter in models of biological evolution is the use of forced 
directional changes between characters states. Just as many types of phonological 
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changes are directional, the probability of di.erent amino acid substitutions can 
be quanti/ed and applied to models of evolution. Incorporating directional infor-
mation into character state transitions may be one simple and productive way in 
which biological parameters can be successfully adapted to language data.

-e work of Russell Gray and colleagues represents an admirable initial ef-
fort to ask historical linguistic questions based on lexical data and biological al-
gorithms (Gray & Atkinson 2003, Gray & Jordan 2000). Gray’s technique involves 
coding lexical items as cognate classes. Such a strategy produces a huge number 
of characters for comparison, but is still limited by the need for reliable cognacy 
judgments. If one goal of linguistic phylogenetics is to infer more ancient relation-
ships than those distinguishable by words alone, typological data may be the only 
choice. Some of our unpublished work (Saunders 2006) suggests that introducing 
even a small number of typological characters into a predominantly lexical data-
set can dramatically increase the accuracy of the phylogeny. Presumably, the data 
types are complementary; the inclusion of stable typological features may resolve 
higher order relationships relatively uninformed by lexical data. Similar improve-
ments have been noted in biological analyses, where combining molecular and 
morphological data to infer organismal phylogenies can increase certainty and 
improve the accuracy of the resulting trees (Baker & Gatesy 2002).

Despite the striking theoretical and methodological parallels between biologi-
cal and linguistic evolution, the transfer of methods must be done with caution. 
E.orts must be made to evaluate both the diversity of methods available and the 
appropriateness of di.erent options for analysis within each method. -is is a 
short term goal. In the long run, the best performing algorithms and evolutionary 
models can be incorporated into so1ware designed speci/cally for linguistic data. 
Towards the short term goal, linguists may currently bene/t from the achieve-
ments of biological phylogenetics through the use of the available so1ware.

-e expansive collection of computational tools developed to pursue a variety 
of questions relating to phylogenetics should inspire linguists. A good place to 
start is to go to Joseph Felsenstein’s webpage, which contains the most up-to-date 
collection.2 While the number of tools available may be staggering, many operate 
on the same basic principles. To help linguists e3ciently apply the methods evalu-
ated in this paper and others found on the Felsenstein webpage, we provide a brief 
introduction to the discipline in the following.

Phylogenetics so1ware can be roughly divided into two categories, generalist 
and specialist. Two of the simplest and most widely-used generalist packages are 

2. -e URL for Felsenstein’s webpage is http://evolution.genetics.washington.edu/phylip/so1-
ware.html.

http://evolution.genetics.washington.edu/phylip/software.html
http://evolution.genetics.washington.edu/phylip/software.html
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PAUP* (Swo.ord 2002) and PHYLIP (Felsenstein 2005),3 which allow for a large 
variety of Maximum Likelihood, Maximum Parsimony and Distance Methods. In 
addition to raw output, these programs have many post-analysis features enabling 
the user to measure, compare and visualize trees. Both PAUP* and PHYLIP have 
been around for a long time, and are constantly updated. -e specialist programs 
are usually designed to complement the generalist programs, o1en representing 
methodological extensions or improvements in e3ciency.

Most phylogenetics programs require that input data be organized in a format 
called ‘NEXUS’ (Maddison et al. 1997). -e NEXUS format consists of organiza-
tional divisions called ‘blocks,’ each of which contains information concerning the 
nature of the data or the type of analysis. -e most basic information (how the 
data are coded and how many characters and taxa are present) is listed in blocks 
used by all of the programs; the more program-speci/c information is listed in 
specialized blocks that can easily be added or removed. -e NEXUS format allows 
a single data set to be interchanged between programs with minimal e.ort.

In §§4–5 below, a1er having discussed criteria for sampling the most reliable ty-
pological data and presenting the languages in the sample, we introduce four of the 
basic phylogenetic methods and performance-evaluate their results on our dataset.

2. A method for evaluating the strength of typological features for 
phylogenetic analyses

In the preceding section we mentioned a phenomenon shared between biological 
phenomena and languages, namely the di.erential rates of change for di.erent 
characters. Our main motivation for using typological features for building ge-
nealogies is the hope that we may be able to reconstruct language history at time 
depths that are not within reach of the traditional comparative method. To reach 
the maximally possible depth of time one will need to choose the features which 
tend to be most stable diachronically and which are least amenable to change as 
the result of areal convergence. In this section we brie0y summarize an approach 
to the problem of determining the relative stabilities of di.erent typological fea-
tures (the approach derives from Wichmann & Kamholz forthcoming, and is dis-
cussed in more detail there).

In order to make meaningful statements about the stability of linguistic fea-
tures it is necessary to study their behavior within genetic units where there are no 
controversies over genetic relatedness and where time depths are roughly equal. 

3. PAUP* is downloadable through www.sinauer.com and PHYLIP through the URL cited in 
the previous note.
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A convenient list of such uncontroversial genetic units is provided by the ‘genera’ 
of WALS, as de/ned by Matthew S. Dryer. A genus is a group of languages which 
are fairly obviously related and whose time depth, whenever this is known, does 
not exceed 4000 years. -e level of classi/cation corresponding to a genus is in-
tended to be comparable across the world. It is not an entirely objective notion but 
relies to some extent on the informed intuitions of Dryer (cf. Dryer 1989 for more 
discussion and Dryer 2005a for a complete list of genera).

A starting assumption for our approach is that the feature value which is most 
favored in a given genus is the one that should be reconstructed for the proto-
language of the genus and that languages exhibiting other values will have under-
gone changes. -ere would obviously be counterexamples to this, but we think 
that at a shallow time depth the assumption would hold true in the great majority 
of cases. Moreover, we o1en simply do not know what the true history was, so we 
need an assumption like the one just stated. On the basis of these considerations 
we can now make the crucial inference that the more representative a feature value 
is within a given genus, the more stable that feature may be assumed to be within 
the genus. In other words, the more widespread the feature value, the more stabil-
ity is inherent in the feature. Following this logic we may study the distribution 
of values of a given feature for each genus and then calculate an average of how 
well represented the best represented value is throughout all genera in the WALS 
sample. It is irrelevant to what degree ‘the best represented value’ varies across 
genera — when each genus has a high degree of consistency of one particular value 
then the feature as a whole should count as highly stable.

In order to implement this kind of evaluation strategy we need to tackle the 
problem of how to compare features that have di.erent numbers of values or for 
which the number of languages attested vary. For an illustration of the question, 
suppose that we are comparing the stability of the following two features: ‘Order 
of Subject, Object, and Verb (WALS Ch. 81 = Dryer 2005b) and ‘Associative Plural’ 
(WALS Ch. 36 = Daniel & Moravcsik 2005).4 Even if we limit the test to one genus, 
for instance Germanic, we still have the problem that the numbers of languages 
sampled for the two features are di.erent, and the number of possible values is also 
di.erent. -us, the best represented value (‘SVO’) out of 7 possible ones occurs 5 
times in a sample of 8 Germanic languages. How may we now compare this to the 
Associative Plural? Here the best represented feature value (‘unique periphrastic 
associative plural’) is one out of 4 possible values and occurs 5 times in a sample of 

4. For the present discussion it is irrelevant exactly what precisely is meant by ‘Associative plu-
ral’ or how the word order feature is de/ned. Moreover, it would take up too much space to 
present feature de/nitions here. For such information, the interested reader is referred to the 
relevant WALS chapters.



 How to use typological databases in historical linguistic research 381

7 Germanic languages. Let us translate the problem into a situation which might 
be more familiar.

In the case of the Associative Plural, we have to decide what the probability is 
of drawing the same card 5 times when there are 7 cards to draw from and each 
may have 4 di.erent values. -is can only be decided if we either know what the 
probability of each of the 4 di.erent values is or if we simply assume that they are 
equal. For the present, let us make the latter assumption.5 With a bit of mathemati-
cal intuition it is easy to see that the probability of the situation represented by the 
Associate Plural is higher than that of drawing the same card 5 times when there 
are 8 to draw from and the number of (equally) possible values is 7. Obviously, all 
else being equal, it is a bit harder to draw the same card 5 times of out 7 than 5 
times out of 8. But when there are several more equally possible values involved, as 
in the second situation, it is going to get very hard to draw 5 that are the same out 
of 8. Since the probability that the number of occurrences of the best represented 
feature value could be due to sheer chance is lower for ‘Order of Subject, Object, 
and Verb’ than for ‘Associate Plural’, the Germanic evidence suggests that Order of 
Subject, Object, and Verb is the more stable feature of the two.

When calculating the probabilities (henceforth p-values), the variables in-
volved are the di.erent possible values of a feature (we label these a, b, c, …), the 
number of possible values, k, and the number of languages in the set, n. -e num-
ber of times that the best represented feature value occurs is labelled r.

As an illustration, we provide the example in Table 1. Here we have a feature 
with 2 possible values (a or b). -us k = 2. -ere is a set of 4 languages (n = 4). Ta-
ble 1 provides all the logically possible distributions and the corresponding value 
of the best represented feature values, r.

Table 1. An example of distributional possibilities when k = 2 and n = 4.
Distribution r Distribution r
aaaa 4 bbab 3
bbbb 4 bbba 3
aaab 3 aabb 2
aaba 3 abab 2
abaa 3 abba 2
baaa 3 baab 2
abbb 3 baba 2
babb 3 bbaa 2

5. -is assumption begs the questions of areal convergence and universal preferences for par-
ticular typological features, but toward the end of this section we discuss why, for the present 
purposes, it may nevertheless be sustained.
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Since there are 16 logically possible distributions, the di.erent values of r have the 
following probabilities attached to them:

 r  probability
 4  2/16
 3  8/16
 2  6/16

-ere are two ways that the p-value could be calculated. One is to generate a table 
like Table 1 for the di.erent values of k and n and then go through the table for 
given values of r and calculate the p-value. We might call this the ‘brute force’ 
approach. Another way would be to derive a general mathematical formula for 
calculating these values. We have chosen the former, less elegant approach. -us, 
we pro/ted by a computer program written by David Kamholz in Perl which sim-
ply calculated the p-values for each feature and genus in WALS. By averaging the 
p-values found for each feature a ranked list of features were generated where the 
(averaged) p-value is inversely proportional to the rank-order of the correspond-
ing feature in terms of its usefulness for genealogical analyses.6

It is important to keep in mind that we are dealing with features strictly and 
only as de/ned and attested in WALS. If a particular feature were de/ned di.er-
ently or were documented di.erently it would also have a di.erent p-value. While 
the p-values are useful for deciding which features to select for a phylogenetic 
investigation we should also emphasize that one should be careful not to blindly 
select a set of features to use on the basis of p-values alone. -e features of WALS 
are structured in such a way that some are problematic even if they may be high-
ranking in terms of feature values. -e two major problems with the ways that data 
are encoded in WALS are what we might term ‘the interdependency problem’ and 
‘the wastebasket problem’.

-e interdependency problem crops up with some features that refer to one 
another. For instance, ‘Relationship between the Order of Object and Verb and 
the Order of Relative Clause and Noun’ (WALS Ch. 96 = Dryer 2005c) combines 
data from ‘Order of Object and Verb’ (WALS Ch. 83 = Dryer 2005d) and ‘Order 
of Relative Clause and Noun’ (WALS Ch. 90 = Dryer 2005e). If both feature no. 
96 and one of the features no. 83 or no. 90 were drawn upon to make inferences 

6. -e approach whereby we simply average the p-values was licensed by a one-way ANOVA. 
-is statistical test was used to estimate whether there are signi/cant overall di.erences in vari-
ance between p-values within a given feature as opposed to between features. In order to avoid 
the controversial issue of how to deal with empty cells when doing this test we reduced the data-
set to the maximal possible size not containing empty cells. In this set there were p-values for 65 
features and 7 genera. -e result was highly statistically signi/cant. More detail, as well as results 
of other statistical test are given in Wichmann & Kamholz (forthcoming).
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concerning relationships among languages, then the values for the features object-
verb word order or relative clause-noun word order would be represented twice 
in the data matrix, giving extra weight to these features — something which is not 
necessarily warranted. In such cases one must exclude one or more features such 
that overlap does not occur.

-e wastebasket problem involves features that contain an ‘other’-value, which 
will group languages together that do not share a positively de/ned trait; such a 
negatively de/ned feature-value will obscure relationships. An example would be 
the value ‘marked by mixed or other strategies’ of the feature ‘Distributive Numer-
als’ (WALS Ch. 54 = Gil 2005). In this case, one has to encode scores for the ‘other’-
value as gaps in the data rather than as true character states.

As mentioned earlier in this section, the logic by which the p-values are de-
rived hinges upon the assumption that the probability of /nding one particular 
character state out of x possible ones manifested in a given language is 1/x. If this 
were a statement about how languages actually behave, it would be highly prob-
lematic. We know that some character states are heavily geographically skewed (a 
phenomenon which we might label ‘the areal factor’), and we also know that cer-
tain character states are more widespread in human languages at large than others 
(‘the universals factor’). We believe, however, that the areal factor in the end may 
not constitute as great a problem as one might think, and that there are ways of 
compensating for the universals factor or perhaps even reasons to ignore it.

As regards the areal factor it is instructive to leaf through WALS. It quickly 
becomes clear that no two distributional maps are quite the same. -is is expected 
since it is well known that even the best established ‘linguistic areas’ such as the 
Balkans (Sandfeld 1930), India (Emeneau 1956), Arnhem Land (Heath 1978), Me-
soamerica (Campbell et al. 1986), the Circum-Baltic area (Koptjevskaja-Tamm & 
Wälchli 2001), Amazonia (Aikhenvald & Dixon 1998), and Europe (Dahl 1990, 
Haspelmath 1998), are de/ned on the basis of just a small handful of typological 
character states, and that even such areas have fuzzy boundaries rarely exhibiting 
neat alignments of the isoglosses that de/ne them. If genealogies were to be estab-
lished on the basis of a small handful of typological characters, areal e.ects could 
skew the results heavily, but the greater the number of characters used, the more 
such e.ects should be expected to neutralize one another because of the di.eren-
tial areal distributions of the states of di.erent characters. -is is why we think that 
in the context of the way that the p-values are meant to be applied it is viable to 
operate with the 1/x-probability assumption.

As for the universals factor, this may be compensated for in a parsimony anal-
ysis by introducing step matrices specifying that a change to a given character state 
should be penalized in inverse proportion to how o1en it occurs among human 
languages at large, cf. explanations in §5.2 below. We are not sure, however, that 
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we want to subscribe to the necessity of such a compensatory measure. In the end, 
the universals factor may just be a special instance of the areal factor. If we view the 
entire world as just another large area — the largest, it so happens — it becomes 
clear that there is no a priori reason to assume that the languages which it contains 
should exhaust the possibilities of human language or that particularly widespread 
typological character states — so-called ‘statistical universals’ — will necessarily 
be more preferred biologically than others. To really be able to make claims about 
universally preferred character states we would need evidence independent of 
world-wide distributions. In the absence of such evidence we may consider the 
universals factor as part and parcel of the areal factor.

3. A test sample

-e WALS data on languages of the Americas are far from complete enough to 
make any actual inferences concerning historical relationships among these lan-
guages. -ey do, however, constitute a good sample for the purpose of testing 
various phylogenetic methods and for gauging to what extent an ampli/cation of 
the dataset would be needed for making interesting empirical inferences in the 
future. -e database contains data for 621 Native American languages (not includ-
ing Eskimo-Aleut). For these languages there are a total of 15,046 data points, 
which means an average of 24.2 data points per language. -e representation of the 
various languages and the extent to which di.erent features have been investigated 
varies greatly. -ere is only a relatively small set of languages for which enough fea-
tures have been investigated that comparisons may be expected to yield interesting 
results. For instance, there are only 70 languages that have been investigated for 60 
or more features, and these languages are widely dispersed over the continent(s).

Given the limitations of the dataset, we have selected a small sample from the 
languages of the Americas. Since a major aim of this paper is to investigate the 
utility of typological features for detecting genetic relatedness, our sample includes 
languages that are known to be related. We have sampled pairs of languages whose 
status as members of one and the same family is undisputed among specialists. 
Another criterion was that the languages selected be well attested. By these two 
criteria, we ended up selecting six pairs of related languages, all of which were 
among the top /1h in the Americas in terms of the number of features for which 
they were investigated. -e languages in question are the Athapaskan languages 
Slave and Navajo, the Chibchan languages Ika and Rama, the Aymaran languages 
Aymara and Jaqaru, the Uto-Aztecan languages Yaqui and Comanche, the Oto-
manguean languages Chalcatongo Mixtec and Lealao Chinantec, and the Carib 
languages Hixkaryana and Carib.
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In the following section we simultaneously exercise our dataset and discuss 
some features of di.erent algorithms exemplifying the range of algorithms devel-
oped to date. All of the trees shown in this section, except the one in Figure 1, are 
based on the same selection of just 17 WALS features.7

4. Introducing four di+erent phylogenetic algorithms

4.1 Neighbor-joining

Neighbor-joining, an algorithm developed by Saitou & Nei (1987), is fast and 
practical for a high number of taxa. Like other clustering algorithms, it produces 
a distance matrix from the data and builds up the tree starting by uniting the two 
closest taxa under a node. It then computes new distances where the node just 
added is treated as a single taxon replacing the two original taxa. -is process 
is repeated until a whole tree is produced. -e resultant tree has branch lengths 
indicating relative distances. In Figure 1 we have provided so-called bootstrap val-
ues. -ese values give a statistical measurement of the amount of support for each 
node (Felsenstein 1985). A single bootstrapping procedure consists in making n 
random samples with replacement of whole characters from the set of n charac-
ters in a given data matrix. -is means that one and the same character may be 
sampled more than once and others le1 out. On the basis of this sample a tree 
is constructed. -e procedure is repeated many times — say 10,000 times. -at 
produces a collection of 10,000 trees. One can now count how o1en a given node 
in the original tree recurs among the trees in the collection and thereby derive 
an idea of how well supported each node is.8 Without such bootstrap values, the 

7. -e features selected are the 17 highest ranking in terms of p-value which additionally sat-
isfy the following criteria: at least 10 out of the 12 languages should be attested for the feature 
selected, the features must not be non-informative (i.e. having the same value for all languages 
or for all but one language), and the features should not su.er from interdependency in the 
sense that that their de/nitions overlap. We have not required the features to be independent in 
the sense that they are free of mutual statistical implication relations. Notably, in our selection 
of features there are several features of a3x and constituent order which correlate to various 
degrees. Given the recent availability of an exact method for quantifying implicational rela-
tions (Holman, manuscript) it would now be possible select features that are completely free of 
mutual implicational relations. It is not certain, however, that features which are independent 
in this sense are necessarily to be preferred since there is a tendency for such features to also 
be less stable. More testing is required in this area. See Appendix for the data matrix and short 
feature descriptions.

8. -e term ‘bootstrapping’ derives from the saying ‘to li1 oneself by one’s own bootstraps’ and 
hints at the fact that the method does not involve an external yardstick but, so to speak, evaluates 
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tree in Figure 1 would be deceptive, suggesting, as it does, that the relationships 
among the 12 languages can and have been conclusively resolved. Given the small 
amount of data (17 features), it is encouraging that with the exception of Ika and 
Rama all the pairs of languages that are actually related are joined under exterior 
nodes even if the Otomanguean and Athapaskan branches are the only ones to 
be supported by bootstrap values in the 95% range, which is usually considered 
indicative of strong statistical signi/cance. -e two nodes exhibiting values in the 
80–90% range are moderately well supported. But the extremely low bootstrap 
values found at all but one of the interior branches of the tree indicate that the 
data give no strong support for any relatedness among the 6 language pairs, except 
perhaps between Uto-Aztecan and Aymaran.

Figure 1. Tree based on 17 highest-ranking features produced by Neighbor-joining with 
bootstrap values (10,000 runs) using SplitsTree4 (Huson & Bryant 2006).

In Figure 2 we have made a quick test of the validity of our p-values (cf. §2) by 
selecting the 17 lowest-ranking features.9 In the resulting phylogeny not only the 
two Chibchan languages Ika and Rama but also the Athapaskan languages Slave 
and Navajo as well as the Uto-Aztecan ones Comanche and Yaqui are divorced. 

the data by the data themselves. For presentations of this and related statistical procedures see 
Felsenstein (2004: Ch. 20).

9. -at is, the lowest-ranking features which simultaneously satisfy the same criteria as the 
ones chosen as the best ones (cf. Appendix). Since one of the criteria is that no more than two 
languages must be unattested for a given feature we are actually forced to include some relatively 
high-ranking features. -e ones selected are: 1, 2, 3, 4, 35, 49, 71, 73, 77, 91, 100, 102, 103, 107, 
113, 114, 131.
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-is shows the usefulness of the p-values, and at the same time gives an example 
of the kind of quick test for which Neighbor-joining is very useful.

Figure 2. Tree produced by Neighbor-joining based on ‘worst’ p-valued features and us-
ing SplitsTree4.

4.2 Neighbor Net

Whereas most methods will impose a tree on data regardless of the extent to which 
the data actually map on to a tree-like phylogenetic evolution, the SplitsTree410 
implementation of the Neighbor Net method allows for an e.ective visual method 
of depicting network structures that are truer to the data. In such a network, the 
problem of /nding an optimal tree is le1 unresolved when it is in fact not resolv-
able. Instead, alternative trees are suggested. -ese various trees may be arrived at 
by collapsing the parallel edges of the structure in all possible ways. As a quick way 
of getting an overview of the degree to which the data conform to a phylogeny, this 
method is very e.ective. Like the bootstrap values in Figure 1, but perhaps some-
what clearer, the network-like structure of the representation in Figure 3 shows 
that the data cannot tell us much about possible relationships among the six pairs 
of languages in our sample.

10. SplitsTree4 may be downloaded from www.splitstree.org.
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Figure 3. A Neighbor Net representation produced by SplitsTree4.

4.3 Maximum parsimony

Parsimony methods were among the /rst to be implemented in the early days of 
modern phylogenetics about half century ago and are still widely used. -ey are 
fast and logically quite transparent. -e idea behind such methods is to /nd a tree 
which accounts for the data using the fewest number of changes. -is Occam’s Ra-
zor principle is familiar to historical linguists who, when they produce phylogenies 
from phonological evidence, also try to arrive at reconstructions that account for 
the data with a minimum of changes and then shape their family trees accordingly. 
It is a question, however, whether the principle is equally adequate for typological 
data. When using sound changes for building trees we let certain changes unique 
to subsets of taxa de/ne the various nodes in the tree. But when using typological 
data, all taxa are typed for some state (value) of all characters (features). For this 
reason and also because of the somewhat rough and generic character of the data, 
there will be many independent innovations and a good deal of 0uctuation back 
and forth among character states between nodes. -erefore we need as much data 
as possible and a method which increases its potential for arriving at an adequate 
tree the more data we add. But with parsimony methods adding data may actu-
ally decrease precision. For instance, branches characterized by many changes will 
tend to attract one another and appear more closely related than they necessarily 
are — a phenomenon known as ‘long branch attraction’. Felsenstein (2004: 122) 
concludes a penetrating discussion of the statistical properties of parsimony by 
stating that “parsimony will work particularly well for recently diverged species 
whose branch lengths are not long.” In spite of the disadvantages of parsimony 
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methods they are di3cult to ignore since, unlike other methods, they allow for 
constraining an algorithm such that it takes into account known tendencies for 
changes among individual characters. Since parsimony involves a calculation of 
cost in terms of the ‘steps’ or changes needed to transverse the tree it is possible 
to stipulate that certain changes are more costly than others, making the tree-
construction process conform to particular hypotheses about changes in linguistic 
structure. -us parsimony may be used to test such assumptions, an issue to which 
we return in §5 below.

In Figure 4 we show a cladogram of our 12 sample languages constructed by a 
maximum parsimony algorithm implemented in the program PAUP* (and using 
TreeView11 for graphic editing).

Hixkaryana

Rama

ChinantecL
MixtecChal

Navajo

Slave

Ika

Carib

Comanche

Yaqui
Jaqaru

Aymara

Figure 4. A Maximum Parsimony analysis of the dataset using PAUP*.

-e unrooted cladogram in Figure 4 is de/cient in that it falsely unites the Carib 
language Hixkaryana and the Chibchan language Rama. Only three pairs of lan-
guages known to be related, i.e. Chinantec-Mixtec (Otomanguean), Navajo-Slave 
(Athapaskan), and Jaqaru-Ayamara (Aymaran), are correctly joined. It looks like 
parsimony is not an adequate method for the type of data we are using here. We 
have obtained similarly poor results by looking at datasets involving other Ameri-
can and Austronesian languages and feel that these explorations are su3cient to 

11. TreeView is downloadable from http://taxonomy.zoology.gla.uk/rod/treeview.html.

http://taxonomy.zoology.gla.uk/rod/treeview.html
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cast serious doubt on the validity of parsimony for the purpose of building phylog-
enies from linguistic data (Cysouw et al. in 2006, Saunders 2006). In §5 we return 
to parsimony in order to test whether the results improve when we add weighting 
or step matrices.

4.4 Bayesian analysis

Bayesian inference of phylogeny is executed through an algorithm which searches 
through a space of possible trees, preferably steering toward those trees which 
maximize a value called the ‘posterior probability’. -e ‘posterior probability’ is a 
numerical evaluation of the probability that a given tree is the correct one for the 
data, and is formulated from Bayes’ -eorem. Bayes’ -eorem allows the probabil-
ity of one event to be computed from observations of another event and knowl-
edge of their joint distributions (Huelsenbeck & Ronquist 2001). For phylogenetic 
inference, the event of interest is the probability of the tree given the data, which 
can be described with the following formulation of Bayes’ -eorem:

 P(tree+model|data) = P(data|tree+model) × P(tree+model) / P(data)

Here the probability of the tree (and the model used to generate the tree) given the 
data is equal to the likelihood of the tree and model, multiplied by the probability 
of the tree and model itself, and then divided by the probability of the data. -e 
P(data|tree+model) can be calculated through established maximum likelihood 
methods, while the P(tree+model) is assumed through the prior probabilities de-
/ned by the researcher. -e values assigned for the prior probabilities determine 
which trees have a high ‘posterior probability’; it is this subjectivity that makes 
Bayesian methods controversial. -e problematic term, P(data), has been dealt 
with computationally through the use of Markov chain Monte Carlo (MCMC) 
algorithms.

Starting with an arbitrary tree in the de/ned space of possible trees, MCMC 
algorithms select a neighboring tree at random. Instead of calculating the ‘pos-
terior probabilities’ for each individual tree, the algorithm compares the ratio of 
likelihood between the current and the neighboring tree. In comparing this ratio, 
the P(data) term cancels out. If the neighboring tree has a higher likelihood (i.e. if 
the likelihood ratio of Tneighbor/Tcurrent is > 1), then the neighboring tree becomes 
the current tree. If the likelihood ratio is < 1, then the algorithm compares that 
ratio value to a random number between 0 and 1. If the ratio is higher than this 
random value, the current tree is kept; if not, another neighbor tree is selected and 
the process continues.

-e ratio comparison and tree selection steps make up one iteration of the 
algorithm. As the iterations increase, the ‘posterior probability’ of the sampled 
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trees is also prone to increase. -is progression is reported by the so1ware through 
‘posterior probability’ values collected at a consistent rate (i.e. every 100 iterations). 
As the sampling continues, a point of convergence is reached when the ‘posterior 
probability’ of subsequent trees fails to improve. A1er this point, the algorithm 
collects trees with near equal probability. Once the desired number of iterations is 
complete, the pre-convergence trees are thrown out. From the remaining sample 
of optimal trees, a consensus tree is assembled following a basic rule: only include 
those groups which exist in a more than a certain threshold percentage (50% and 
above) of optimal trees. Each expressed node has a ‘posterior probability score’ to 
represent its strength, de/ned as the probability of /nding that node in the set of 
optimal trees. Branch lengths are similarly derived from the set of optimal trees.

Bayesian inference of phylogenies is implemented in the so1ware package Mr-
Bayes.12 Under default conditions, MrBayes uses four tree-searching algorithms 
simultaneously and in concert. -ree of these algorithms are considered ‘hot’ and 
allowed to make large jumps in tree space to /nd neighbors. One chain is always 
‘cold’ and is constrained to make only local comparisons. A1er every genera-
tion of the program, the chain with the highest ‘posterior probability’ becomes 
the cold chain. Together these chains avoid locally optimal areas of ‘posterior 
probability’ and hone in on those global areas of tree space containing the most 
probable trees.

Bayesian analysis is at the cutting edge of phylogenetic algorithm develop-
ment. It neither has the kind of conceptual simplicity that characterizes distance 
or parsimony analysis, nor is it as speedy. In fact, when the number of taxa and 
characters run into the dozens it may take days for even a fast computer to per-
form the analysis. Nevertheless, it may be well worth considering in building lin-
guistic phylogenies, as our initial explorations suggest that it could be superior to 
other methods.

Figure 5 shows an unrooted phylogram based on our dataset constructed us-
ing MrBayes (edited in TreeView). We made the program run 10 million genera-
tions, sampling every 100. -at produced a total sample of 100,000 trees. Of these, 
only the last 25,000 were kept, which means a ‘burn in’ of 75,000 trees. From the 
25,000 subset a 50% majority rule consensus tree was made. -e analysis took 
around 41 hours on a G4 iMac. -e resulting tree at /rst glance seems a bit confus-
ing because of its not very tree-like structure. But on further inspection it becomes 
clear that it represents the relationships among the languages more adequately 
than any of the other methods tested. First, all pairs of truly related languages 
are in fact joined as daughters under immediately shared nodes. -e tree shows 
strong support for the pairs Mixtec-Chinantec, Navajo-Slave, and Jaqaru-Aymara. 

12. MrBayes is downloadable through http://mrbayes.csit.fsu.edu/index.php.

http://mrbayes.csit.fsu.edu/index.php
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For Comanche-Yaqui there is some weak support. For Carib-Hixkaryana and Ika-
Rama the tree is neutral: in an unrooted tree a star-like shape (*) re0ects absence 
of speci/ed relationships, so the tree neither supports nor denies the possibility 
of relationships among these four languages. -us, for all the relationships men-
tioned so far the tree is either correct or neutral. Except in one case its topology 
does not make statements that could be wrong. -e one surprise in the topology is 
the node that attaches the Jaqaru-Ayamara pair to the Uto-Aztecan node of Yaqui 
and Comanche. We would expect a branch going from directly from the Jaqaru-
Aymara node to the central one. But apparently there is support for this relation-
ship in the dataset at hand.

It is very instructive to compare the Bayesian tree in Figure 5 to the one pro-
duced by Neighbor-joining in Figure 1. If all the branches of Figure 1 that have 
bootstrap values below 80 are pruned away one arrives at a tree having the exact 
same topology as the one in Figure 5 (ignoring branch lengths). -is suggests that 
Neighbor-joining and Bayesian analysis are quite compatible, the major di.erence 
being that the latter method is more conservative and does not impose topological 
structure when support for such structure is weak. -us, while Neighbor-joining 
has to be used in conjunction with bootstrapping and its resulting trees revised in 
light of these values, Bayesian analysis, as implemented in MrBayes, directly shows 
strongly supported hypotheses re0ected in topology and avoids positing structure 
for which there is little support.

0.1

Carib

Hixkaryana

Ika
Rama

ChinantecL

MixtecChal 0.98

Navajo Slave

0.99

Comanche Yaqui Jaqaru

Aymara

0.96

Figure 5. A Bayesian analysis of the dataset using MrBayes.
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4.5 Conclusions regarding methods

-e four di.erent methods tested are all useful, but for di.erent purposes. Neigh-
bor joining is a quick method for inspecting the structure of a phylogeny for a 
large dataset, but should be used with caution and be supplemented with bootstrap 
analysis. Neighbor Net, like similar methods implemented in SplitsTree, is another 
fast method and the visually most e.ective, directly showing in the graphic repre-
sentation how tightly knitted a phylogeny is. Parsimony may be the least adequate 
method for the kinds of data that we have been looking at in this paper, but could 
potentially be valuable for the analytical purpose of testing the e.ects of di.erent 
methods for enhancing phylogenetic signals (see the next section). Bayesian analy-
sis is probably the type of method which is most adequate for linguistic typological 
data and the results seem to directly make for strong hypotheses concerning actual 
genealogical relationships. O1en it will be useful to run a dataset through all the dif-
ferent methods (for instance, in the order in which they were presented here), but it 
seems that the /rmest conclusions are reached by means of Bayesian analysis.

5. Methods for enhancing phylogentic signals

5.1 Weighting

If some characters are more suited for establishing genealogies than others it should 
ideally be possible to enhance phylogenetic signals by giving more weight to more 
suitable characters than to less suitable ones. PAUP* is among the programs that 
allows for such weighting schemes, which require the use of parsimony. We have 
tested the e.ect of weighting characters according to their p-values (cf. §2 above). 
Since, as already mentioned, the p-values roughly decrease linearly by each step 
in the rank-order, we have applied a simple weighting procedure by which the 
lowest-ranking feature — the one with the highest p-value — carries a numerical 
weight of 1 and the highest-ranking feature among the 139 relevant ones carries 
a weight of 139. Testing this method on various sets of languages of the Americas 
consistently shows little e.ect on tree topologies. Weighting nevertheless does af-
fect the phylogenetic analysis in subtle ways, as revealed by bootstrapping. -us, it 
may be informative to compare bootstrap values for trees produced without as op-
posed to with weighting. -e weights would seem to be correctly set when ‘wrong’ 
nodes receive decreased support and ‘right’ nodes increased support; inversely, 
when ‘right’ nodes are weakened and ‘wrong’ ones strengthened something must 
be wrong with the weighting scheme. A comparison of Figures 6 and 7 provides an 
example of the e.ect of weighting. As can be seen, the di.erences are quite small. 
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-e two trees have the same — mostly wrong — topology. In two cases, how-
ever, bootstrap values change, and changes in both cases go in the right directions. 
-us, the node falsely uniting Carib, Chinantec, Mixtec, Hixkaryana, Ika, Navajo, 
Slave, and Rama is weakened from 85 to 79 and the correct node united Navajo 
and Slave is strengthened from 88 to 92.

On the basis of these initial explorations we conclude that weighting is not 
enough to ‘save’ a parsimony method. On the other hand, testing the e.ects of 
weights may be a valuable analytical tool in its own right. -us, assumptions about 
the relative merits of di.erent features as input to genealogical analyses may be 

/––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Aymara
|
|                               /––––––––––––––––––––––––––––––– Carib
|                               |
|                               |              /–––––––––––––––– ChinantecL
|                               +––––––85––––––+
|                               |              \–––––––––––––––– MixtecChal
|                               |
|                               +––––––––––––––––––––––––––––––– Hixkaryana
|               /––––––85–––––––+
|               |               +––––––––––––––––––––––––––––––– Ika
|               |               |
|               |               |              /–––––––––––––––– Navajo
|               |               +––––––88––––––+
|               |               |              \–––––––––––––––– Slave
+––––––72–––––––+               |
|               |               \––––––––––––––––––––––––––––––– Rama
|               |
|               +––––––––––––––––––––––––––––––––––––––––––––––– Comanche
|               |
|               \––––––––––––––––––––––––––––––––––––––––––––––– Yaqui
|
\––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Jaqaru

Figure 6. Tree produced by default parsimony method of PAUP* without weights.

/––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Aymara
|
|                               /––––––––––––––––––––––––––––––– Carib
|                               |
|                               |              /–––––––––––––––– ChinantecL
|                               +––––––85––––––+
|                               |              \–––––––––––––––– MixtecChal
|                               |
|                               +––––––––––––––––––––––––––––––– Hixkaryana
|               /––––––79–––––––+
|               |               +––––––––––––––––––––––––––––––– Ika
|               |               |
|               |               |              /–––––––––––––––– Navajo
|               |               +––––––92––––––+
|               |               |              \–––––––––––––––– Slave
+––––––72–––––––+               |
|               |               \––––––––––––––––––––––––––––––– Rama
|               |
|               +––––––––––––––––––––––––––––––––––––––––––––––– Comanche
|               |
|               \––––––––––––––––––––––––––––––––––––––––––––––– Yaqui
|
\––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Jaqaru

Figure 7. Tree produced by default parsimony method of PAUP* with weights based on 
p-values.
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tested by translating the assumptions into quantitative weights and then seeing 
how the results are a.ected.

5.2 Step matrices

Since maximum parsimony seeks out the tree that overall requires a minimal 
amount of changes it is possible to give di.erent weights to di.erent changes, ‘pe-
nalizing’ changes that are presumed to be more unexpected. For instance, we might 
stipulate that the expression of some linguistic category by means of a free particle 
switching to a proclitic is to be regarded as a single step, while a change involving 
going from a free particle to a pre/x might be regarded as two steps. Similarly, a 
word order change from VSO to SVO might be one step (by fronting of S) whereas 
a change from VSO to OVS should be harder and might count as two or more 
steps. Even if directions of change in typology are o1en unknown, we can in most 
cases use simple intuition about the ‘costs’ of changes and, in so doing, construct 
sensible ‘step matrices.’ For each feature, a step matrix should describe the relative 
number of steps involved in changes among all feature values. We have conducted 
several experiments constructing step matrices and testing their e.ects. -e tests 
involved both matrices that simply stipulated steps based on logical reasoning (as 
described) as well as matrices taking into account the world-wide distribution of 
di.erent feature values, adding or subtracting fractions of steps in proportion to 
the percentage of languages in the world which exhibit the given feature value. 
None of these exercises have conclusively proven step matrices to have either a 
positive or a negative e.ect. It is di3cult at this point to judge whether the disap-
pointing results relate to the way that we have constructed the matrices or to the 
datasets. In any case, introducing step matrices into parsimony analyses could be a 
potentially useful tool for making assumptions about directions of change explicit 
and testing the e.ects of such assumptions.

6. Using typological data as a heuristic tool

-e results presented so far suggest that modern, computationally-driven phylo-
genetic methods should have the potential for establishing genealogies based on 
typological data. It is certainly clear that they may minimally be used as a heuris-
tic tool for quickly disclosing candidates for genealogical relatedness or typologi-
cally convergent languages in a large dataset. Although the WALS dataset from the 
Americas is far from extensive enough to allow for a actual empirical hypotheses 
of this kind, we may nevertheless use the data to illustrate the type of heuristic 
procedure that might pro/tably be employed in future research.
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In Figure 8 we show a tree based on WALS data from the 63 best attested 
languages13 of the Americas and the 96 highest-ranking features in terms of p-
values.

Figure 8. Neighbor-joining tree of 63 languages of the Americas using 96 WALS features.

-e many nodes on the tree are mostly wrong. So many, in fact, are wrong that it 
would require too much space to enumerate them all here. A few, however, are cor-
rect. For yet others the limitation in our present knowledge of the classi/cation of 
the languages of the Americas prevents us from making de/nite judgments. Given 
the uncertainty about the classi/cation of many of the languages it is impossible to 
do exact statistics on how well the tree performs. But given 93 taxa it is possible to 

13. -e so1ware imposes limitations on the symbols that can be used for naming taxa. Higher 
ascii characters and spaces are disallowed. -erefore some language names have been changed 
as follows: Apurina = Apurinã, AwaPit = Awa Pit, BarasanoA = Barasano, CanelaKra = Canela-
Krahô, ChinantecB = Lealao Chinantec, CoosHani = Hanis Coos, CreePlains = Plains Cree, 
EpenaPedee = Epena Pedee, Guarani = Guaraní, MixtecCX = Chalcatongo Mixtec, MiwokS = 
Southern Sierra Miwok, NahuatlK = Tetelcingo Nahuatl, NezPerce = Nez Perce, OtomiMez = 
Mezquital Otomi, Passamaq = Passamaquoddy, Paumari = Paumarí, Piraha = Pirahã, PomoS 
= Southeastern Pomo, Purepecha = Purépecha, QuechuaH = Imbabura Quechua, ShipiboKo 
= Shipibo-Konibo, UrubuKaap = Urubú-Kaapor, Wari = Wari’, Wichi = Wichí, ZoqueCop = 
Copainalá Zoque.
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construct a staggering number of more than 8 × 10100 di.erent unrooted bifurcat-
ing trees (see Felsenstein 2004: 25 for how to calculate this), so it would seem that 
just getting 2–3 correct nodes is more than we would expect by pure chance.

-ere might be interesting hypotheses scattered throughout the tree, so it 
would seem too rash to throw out the entire tree just because many of its nodes 
are problematic. A way of rescuing potentially useful information is to combine 
the data matrix on which the tree is built with accumulated knowledge concern-
ing genealogical relations, that is, the results obtained by generations of linguists 
who have employed traditional lexical and morphological comparisons. Some 
programs, such as PAUP*, allow for directly specifying the nodes that should be 
found in the output tree regardless of the topology licensed by the data. In Split-
stree, the program we have used for producing Figure 8, nodes may be forced by 
adding a su3cient number of ‘ghost’ columns to the data matrix. Each column 
represents some imaginary character and has the same state for the taxa that one 
wishes to unite under a single node, while other taxa are le1 unspeci/ed for the 
character in question. -is method actually makes good sense from a linguist’s 
point of view because each ‘ghost’ column may be imagined to represent some 
lexical item uniquely present in the set of languages known to be related. In reality 
it should not be hard to /nd such items if the languages thus forced together are 
truly related.

Figure 9 shows a reshaping of the tree of Figure 8, accomplished by forcing 
eight nodes known to exist, while also marking correct genealogical nodes that 
emerged from the data (three nodes are controversial and are therefore supplied 
with question marks).

-e utility of a tree with forced nodes is that it allows us zoom in on the nodes 
that are not either forced or already known or thought to correspond to real rela-
tionships; the languages grouped under these nodes may now be investigated for 
possible relations of either a genealogical or areal nature that have never earlier 
been considered.

Given the limitations of the data we shall not indulge in discussions of each of 
the various nodes. For the sake of illustrating the procedure, however, we would 
like to brie0y comment on one of them. -is is the node uniting Mapudungun 
and Copainalá Zoque. -e former is a language with many speakers in Chile and 
Argentina and is usually regarded as a linguistic isolate; the latter is a dialect of 
Chiapas Zoque, a Mixe-Zoquean language of Chiapas, Mexico. Among the dis-
tant relatives involving Mixe-Zoquean which have been proposed, Penutian has 
/gured prominently (beginning with Sapir 1929, cf. Wichmann 1994:238–243 for 
an overview of related as well as other proposals). In fact, in the unmanipulated 
tree of Figure 8 a node also includes the Penutian language Southern Sierra Miwok 
in a group together with Chiapas Zoque and Mapudungun. When the Penutian 
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languages are forced together, however, Chiapas Zoque remains united with Ma-
pudungun rather than migrating towards the Penutian node. In this way, a Chia-
pas Zoque-Mapudungun connection is singled out as a hypothesis. One might 
not have thought of the possibility of a relationship among these two languages 
— such a relationship has never, to our knowledge, been proposed — but if we fol-
low the prompting of the heuristic tree and take a next step, which might involve 
searching for lexical parallels, there are some promising further leads. Searching 
for possible cognates among the items on the 100-word Swadesh list using the dic-
tionary of Mapudungun (Map) of Fernández Garay (2001) and the proto-Mixe-
Zoquean (pMZ) lexicon of Wichmann (1995), the following parallels emerge (pZ 
stands for proto-Zoquean, the ancestral language of one of the two major branches 
of Mixe-Zoquean; an apostrophe represents a glottal stop):

“I”   Map inche : pMZ *’ә:tzi
“who”  Map iñey ~ iñe ~ iñ ~ ñi : pZ *’iyә
“what”  Map chem : pMZ *ti

Figure 9. Neighbor-joining tree with forced nodes of 63 languages of the Americas (black 
dots indicate forced nodes, gray ones unforced genealogical nodes emerging from the 
data).
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“woman” Map domo : pZ *yomo
“man”  Map wentru : pMZ *pәn
“blood”  Map mollvün ~ mollviñ ~ mollvin : pMZ *nә’pin14

“head”  Map longko : pMZ *ko-pak15

“hand”  Map küwü : pMZ *kә’
“to sleep” Map umaw- : pMZ *ma:h’
“name”  Map üy : pZ *nәyi

Among the comparisons several may be due to chance, but at least the three items 
“woman”, “hand”, and “to sleep” seem more than super/cially similar. -e number 
of possible cognates, both striking ones and less striking ones, is similar to the 
results one would /nd by comparing, say, English and Farsi.

It would be inappropriate to continue the exercise of comparing Mapudungun 
to Mixe-Zoquean here. We would like to stress that we have not attempted to dem-
onstrate any genetic link. It would be necessary in the /rst instance to show that 
the typological parallels and the lexical look-alikes have strong statistical support. 
And for a conclusive demonstration we would like to be able to /nd cognate gram-
matical elements and systematic sound correspondences. Our only point of this 
little exercise was to describe a heuristic procedure for /nding genetic links using 
an interesting illustration. -e procedure may be improved in several respects to 
produce even better results. -e most immediate need is to make the typological 
database more robust through the addition of data. In the /nal section we brie0y 
discuss some further items for future research.

7. Conclusions and questions for future research

-e present paper has o.ered the results of explorations of a typological dataset 
using computationally-driven phylogenetic so1ware developed largely for the use 
of biologists. First, we have presented a method for quantifying the utility of di.er-
ent typological features for establishing linguistic genealogies. -en we tested four 
di.erent types of phylogenetic algorithms. To very brie0y summarize our /ndings: 
Neighbor-joining seems to be most useful for heuristic purposes; Neighbor Net 
and similar methods are particularly useful for visual analysis; parsimony analyses 
is a valuable tool for assessing the validity of assumptions regarding the weights 
of di.erent characters or preferred directions of change among states, but the as-
sumption that the preferred phylogeny is also the most parsimonious one seems 

14. -is appears to be an ancient composite, where the word for ‘water’, *nә’, combines with an 
element pin of unknown etymology.

15. While pak means ‘bone’, ko- is the element referring to ‘head’.
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to represent a drawback. Our preliminary probing suggests that Bayesian analysis 
has an advantage over all the other three methods, but this /nding of course needs 
to be tested on other datasets. Finally, have we illustrated a simple, heuristic proce-
dure for identifying hitherto unrecognized cases of genealogical relations.

As mentioned, the utility of typological databases for historical linguistic 
research cannot be fully assessed until more extensive databases have been con-
structed. Nor can we hope to bring our results to bear on actual empirical prob-
lems before relevant databases have been enlarged. -e WALS database provides 
a good beginning, as long as the problems of overlap and ‘wastebasket’ categories 
are taken into account. Simply /lling out holes in the WALS matrix for the set of 
languages that one would like to compare would already constitute a useful step 
forward. Eventually, more characters could be added. As should have transpired 
in our discussion of p-values, a character is likely to be more informative the more 
states it has. It may not be simple to /nd characters with several states that can 
be attested for any language, so it might be tempting to simply use binary ones. 
Nevertheless, we would recommend avoiding binary characters since their states 
are expected to be more prone to chance 0uctuation than characters with several 
states.

A crucial issue which we have not directly addressed up to this point is the fol-
lowing: with what degree of con/dence can we accept hypotheses concerning ge-
nealogical relationships generated by a given algorithm on the basis of typological 
data? -e way to answer this question would be to compare trees constructed from 
the results of the application of the comparative method with trees constructed 
from typological data. Variables that should be taken into account are the number 
of languages involved, the time depth, the number of characters used, and the p-
values of the characters. By holding constant some variables and changing others 
it should be possible to arrive at estimates of con/dence. A good deal of theoretical 
work will need to go into exploring adequate ways of comparing trees; but again 
the biological literature will be helpful since a by now classical issue for biologists 
is to assess di.erences among phylogenies produced by traditional morphological 
methods (which are comparable, in many respects, to the use of linguistic typolog-
ical data) and those produced by molecular systematics (comparable, to a certain 
extent, to lexical comparisons). Before long, we expect that providing estimates of 
con/dence will become an entrenched part of the way that historical linguistics is 
practiced, just as it is in most other branches of science. Once this happens, emo-
tionally charged arguments from beliefs about what it takes for a given genealogi-
cal relationship to be ‘proved’ may be avoided and replaced by cooler, statistical 
reasoning.
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Résumé

Plusieurs bases de données ont été compilées a/n de documenter la distribution 
de traits typologiques à travers les langues du monde. Ce travail cherche des façons 
d’utiliser ce type de données dans le but de trouver des relations généalogiques en 
utilisant des algorithmes phylogéniques initialement développés pour des biolo-
gistes. Les points forts en sont la méthodologie, y inclus l’évaluation de la stabilité 
des traits typologiques individuels, la pertinence de di.érents algorithmes ainsi 
que la mise en valeur des signaux phylogéniques et les procédures heuristiques 
a/n d’identi/er des relations généalogiques. Les di.érents points sont illustrés par 
un petit échantillon de données empiriques d’un certain nombre de langues amé-
rindiennes.
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Zusammenfassung

Mehrere Datenbanken sind zusammengetragen worden, um die Verteilung typo-
logischer Merkmale auf die Sprachen der Welt aufzuzeigen. Diese Arbeit bemüht 
sich diese Art von Daten zu benutzen, um Rückschlüsse auf genealogische Bezie-
hungen zu ziehen, indem sie ursprünglich für Biologen entwickelte phylogeneti-
sche Algorithmen benutzt. Ihr zentrales Anliegen ist dabei die Methodologie, die 
Evaluation der Stabilität individueller typologischer Merkmale und die Eignung 
verschiedener phylogenetischer Algorithmen, ebenso wie Wege phylogenetische 
Signale und heuristische Verfahren zu verbessern, um genealogische Beziehungen 
zu identi/zieren. Die unterschiedlichen Punkte werden anhand ausgewählter em-
pirischer Daten einiger Sprachen der Ureinwohner Amerikas illustriert.
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Appendix

Data matrix showing the values of each feature for the selection of 12 languages (rows) and 17 
WALS features (columns).
      6  7  8 26 27 33 44 51 57 69 81 85 86 87 89 101 111
Aymara      4  2  2  2  1  2  6  6  2  2  1  1  1  1  1  2  2
Carib      1  1  1  4  3  2  2  9  1  2  1  1  1  1  1  ?  2
Chalcatongo Mixtec  1  1  2  6  ?  7  6  9  4  1  3  2  2  2  1  6  2
Comanche     1  1  1  2  1  2  6  1  4  2  1  1  1  1  1  3  2
Hixkaryana     1  1  3  4  3  7  2  9  1  2  5  1  1  2  1  2  2
Ika      1  1  1  3  3  7  6  6  1  2  1  1  1  2  3  2  2
Jaqaru      2  2  2  2  1  2  6  1  2  2  ?  ?  1  1  1  ?  2
Lealao Chinantec    1  1  2  5  2  7  6  9  2  4  4  2  2  2  1  2  2
Navajo      1  2  4  6  3  2  3  9  1  1  1  1  1  2  2  2  1
Rama      1  1  2  4  ?  8  6  9  1  2  1  1  1  2  2  2  4
Slave      1  6  4  6  3  2  6  9  1  1  1  1  1  2  2  2  2
Yaqui      1  1  2  2  1  2  6  1  4  2  1  1  1  1  1  6  2

Short feature descriptions: 6: Uvular Consonants, 7: Glottalized Consonants, 8: Lateral Conso-
nants, 26: Pre/xing versus Su3xing in In0ectional Morphology, 27: Reduplication, 33: Coding 
of Nominal Plurality, 44: Gender Distinctions in Independent Personal Pronouns, 51: Position 
of Case A3xes, 57: Position of Pronominal Possessive A3xes, 69: Position of Tense-Aspect Af-
/xes, 81: Order of Subject, Object, and Verb, 85: Order of Adposition and Noun Phrase, 86: 
Order of Genitive and Noun, 87: Order of Adjective and Noun, 89: Order of Numeral and Noun, 
101: Expression of Pronominal Subjects, 111: Nonperiphrastic Causative Constructions.
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