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There are many diseases whose causal tissues or cell types are 
uncertain or unknown. Identifying these tissues and cell types 
is critical for developing systems to explore gene regulatory 

mechanisms that contribute to disease. In recent years, research-
ers have been gaining an increasingly clear picture of which parts 
of the genome are active in a range of tissues and cell types—for 
example, which parts of the genome are accessible, which enhancers 
are active and which genes are expressed1–3. Combining this type of 
information with GWAS data offers the potential to identify causal 
tissues and cell types for disease.

Many different types of data that characterize tissue- and cell-
type-specific activity have been analyzed together with GWAS data 
to identify disease-relevant tissues and cell types—including histone 
marks4–8, DNase I–hypersensitive sites (DHS)9–12, expression quan-
titative trait loci (eQTLs)3,13 and gene expression data14–17. Of these 
data types, gene expression data (without genotypes or eQTLs) have 
the advantage of being available in the widest range of tissues and 
cell types. Previous studies have shown that gene expression data 
are informative for disease-relevant tissues and cell types, and these 
have led to biological insights about the diseases and traits stud-
ied14–17. However, the methods applied in these studies restrict their 

analyses to subsets of SNPs that pass a significance threshold. To our 
knowledge, no previous study has modeled genome-wide polygenic 
signals to identify disease-relevant tissues and cell types systemati-
cally from GWAS and gene expression data.

Here we applied stratified LD score regression7, a method for 
partitioning heritability from GWAS summary statistics, to sets 
of specifically expressed genes to identify disease-relevant tissues 
and cell types across 48 diseases and traits with an average GWAS 
sample size of 169,331. We first analyzed two gene expression data-
sets3,17,18 that contained a wide range of tissues to infer system-level 
enrichments. We then analyzed chromatin data from the Roadmap 
Epigenomics and ENCODE projects1,2 across the same set of dis-
eases and traits to validate these results. Finally, we analyzed gene 
expression datasets that allowed us to achieve higher resolution 
within a system3,19–21 and identified enriched brain regions, brain 
cell types and immune cell types for several brain- and immune-
related diseases and traits; we validated several of our immune 
enrichments using independent chromatin data. Our results under-
score that a heritability-based framework applied to gene expression 
data allows us to achieve high-resolution enrichments, even for very 
polygenic traits.
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We introduce an approach to identify disease-relevant tissues and cell types by analyzing gene expression data together with 
genome-wide association study (GWAS) summary statistics. Our approach uses stratified linkage disequilibrium (LD) score 
regression to test whether disease heritability is enriched in regions surrounding genes with the highest specific expression 
in a given tissue. We applied our approach to gene expression data from several sources together with GWAS summary sta-
tistics for 48 diseases and traits (average N =​ 169,331) and found significant tissue-specific enrichments (false discovery rate 
(FDR) <​ 5%) for 34 traits. In our analysis of multiple tissues, we detected a broad range of enrichments that recapitulated 
known biology. In our brain-specific analysis, significant enrichments included an enrichment of inhibitory over excitatory neu-
rons for bipolar disorder, and excitatory over inhibitory neurons for schizophrenia and body mass index. Our results demon-
strate that our polygenic approach is a powerful way to leverage gene expression data for interpreting GWAS signals.
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Results
Overview of methods. We analyzed the five gene expression data-
sets listed in Table 1, mapping mouse genes to orthologous human 
genes when necessary. To assess the enrichment of a focal tissue 
for a given trait, we followed the procedure described in Fig. 1. We 
began with a matrix of normalized gene expression values across 
genes, with samples from multiple tissues including the focal tis-
sue. For each gene, we computed a t-statistic for specific expression 
in the focal tissue (Methods). We ranked all of the genes by their 
t-statistic and defined the 10% of genes with the highest t-statistic 
to be the gene set corresponding to the focal tissue; we called this 
the set of specifically expressed genes, but we note that this includes 
genes that are not only strictly specifically expressed (i.e., only 
expressed in the focal tissue) but also those that are weakly specifi-
cally expressed (i.e., have higher average expression in the focal tis-
sue). For a few of the datasets analyzed, we modified our approach 
to constructing the set of specifically expressed genes to better take 
advantage of the data available (Methods). We added 100-kb win-
dows on either side of the transcribed region of each gene in the 
set of specifically expressed genes to construct a genome annota-
tion that corresponded to the focal tissue (the choice of the param-
eters 10% and 100-kb window is discussed in the  Supplementary 
Note; our results are robust to these choices; see below). Finally, 
we applied stratified LD score regression7 to GWAS summary sta-
tistics to evaluate the contribution of the focal genome annotation 
to trait heritability (Methods). We jointly modeled the annotation 
that corresponded to the focal tissue, a genome annotation that cor-
responded to all of the genes, as well as the 52 annotations in the 
‘baseline model’7 (including genic regions, enhancer regions and 
conserved regions; see Supplementary Table 1). A positive regres-
sion coefficient for the focal annotation in this regression represents 
a positive contribution of this annotation to trait heritability, condi-
tional on the other annotations. We report regression coefficients, 
normalized by mean per-SNP heritability, together with a P value 
to test whether the regression coefficient is significantly positive. 
Stratified LD score regression requires GWAS summary statistics 
for the trait of interest, together with an LD reference panel (for 
example, 1000 Genomes22), and has been shown to produce robust 
results with properly controlled type I error7. We have released 
open-source software implementing our approach and have also 
released all of the genome annotations that were derived from the 
publicly available gene expression data we analyzed (see URLs). We 
refer to our approach as LD score regression applied to specifically 
expressed genes (LDSC-SEG).

Analysis of 48 complex traits across multiple tissues. We first ana-
lyzed two gene expression datasets—one from the Genotype–Tissue 
Expression (GTEx) project and another that we call the ‘Franke lab’ 
dataset—and we classified the 205 tissues and cell types in these 

datasets into nine categories for visualization (Supplementary 
Tables 2 and 3, and Methods). We analyzed GWAS summary sta-
tistics for 48 diseases and traits from the UK Biobank23 (Methods), 
the Brainstorm Consortium16,24–32 and publicly available sources33–43 
(with an average sample size of 169,331; Supplementary Table 4) by 
applying LDSC-SEG for each of the 205 specifically expressed gene 
annotations in turn. We excluded the human leukocyte antigen 
(HLA) region from all analyses due to its unusual genetic architec-
ture and pattern of LD.

For 34 of the 48 traits, at least one tissue was significant at 
FDR <​ 5% (Fig. 2, Supplementary Fig. 1 and Supplementary Tables 5 
and 6). Several of our results recapitulated known biology: immu-
nological traits exhibited immune cell–type enrichments, psychiat-
ric traits exhibited strong brain-specific enrichments, low-density 
lipoprotein (LDL) and triglycerides exhibited liver-specific enrich-
ments, body mass index (BMI)-adjusted waist–hip ratio exhibited 
adipose-specific enrichment, type 2 diabetes exhibited enrichment 
in the pancreas, and height exhibited enrichments in a variety of 
tissues in a pattern similar to those from previous analyses of this 
trait44. In addition, several of our results validated very recent find-
ings from other genetic analyses; in particular, smoking status, 
years of education, BMI and age at menarche showed robust brain-
specific enrichments that recapitulated results from our previous 
analysis of genetic data together with chromatin data7. Our results 
were robust to the choice of the percentage of genes used (10%) 

Table 1 | List of gene expression datasets used in this study

Name Organism Tissue or cell type Technology

GTEx3 Human 53 tissues or cell 
types

RNA-seq

Franke lab17,18 Human, 
mouse and rat

152 tissues or cell 
types

Array

Cahoy19 Mouse 3 brain cell types Array

PsychENCODE20 Human 2 neuronal cell types RNA-seq

ImmGen21 Mouse 292 immune cell types Array

We analyzed five gene expression datasets: two (GTEx and Franke lab) that contained a wide 
range of tissues and three (Cahoy, PsychENCODE and ImmGen) with more detailed information 
about a particular tissue.
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Fig. 1 | Overview of the approach. For each tissue in our gene expression 
dataset, we compute t-statistics for differential expression for each gene. 
We then rank genes by the t-statistic, take the top 10% of genes and add 
a 100-kb window to get a genome annotation. We use stratified LD score 
regression7 to test whether this annotation is significantly enriched for per-
SNP heritability, conditional on the baseline model7 and the set of all genes.
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and to the size of the window used (100 kb) (Supplementary Fig. 2). 
We assessed correlations in enrichment patterns for pairs of traits 
(Methods) and found large and significant (FDR <​ 5%) correlations 
among many brain-related phenotypes, among many immune-
related phenotypes, and among a third set of phenotypes including 
height and blood pressure that tended to have enrichments in the 
musculoskeletal–connective, cardiovascular and other categories 
(Supplementary Fig.  3). The most significant annotation for each 
of these 34 traits spanned 11–23% (mean 16%) of the genome and 
explained 21–62% (mean 36%) of SNP heritability, with enrich-
ments varying from 1.4×​ to 4.7×​ (mean 2.3×​) (Supplementary 
Table 5).

Because related tissues have highly overlapping gene sets and we 
fit each tissue without adjusting for the other tissues, related tissues 
often appear enriched as a group. In this analysis and the analysis in 
the next section, both of which were focused on identifying system-
level enrichments, these correlated results did not limit interpret-
ability. In later sections, we focused on differentiating among related 
tissues or cell types within a system. We note also that the corre-
lation structure among annotations can lead to a distribution of  
P values that is highly non-uniform (Methods).

Validation using independent chromatin data. We analyzed the 
same 48 diseases and traits using stratified LD score regression7 in 
conjunction with chromatin data from the Roadmap Epigenomics 

and ENCODE projects1,2 (see URLs) instead of from gene expres-
sion data, with three goals: (i) to validate the results from our analy-
sis of gene expression data using a different type of data from an 
independent source, (ii) to identify new enrichments using chroma-
tin data that we did not observe using gene expression data, and (iii) 
to compare enrichments from the two types of data. The ENCODE 
data we used were from a subproject called EN-TEx, which includes 
epigenetic data on a set of tissues that match a subset of the tis-
sues from the GTEx project but are from different donors. In total, 
we analyzed 489 tissue-specific chromatin-based annotations from 
peaks for six epigenetic marks (Methods).

We considered two types of validation for the results of the 
multiple-tissue analysis of gene expression described above: valida-
tion at the system level and validation at the tissue or cell-type level.  
For validation at the system level, we classified the top tissue or cell 
type for each trait with a significant enrichment into one of nine sys-
tems (Methods), and we considered an enrichment to be validated 
if a tissue or cell type from the same system passed FDR <​ 5% for 
the same phenotype in the chromatin analysis. For validation at the 
tissue or cell-type level, we analyzed only the 27 tissues present in 
both the GTEx and EN-TEx datasets, and we considered an enrich-
ment of a tissue in GTEx to be validated if any mark in the same 
tissue in EN-TEx passed FDR <​ 5% for the same phenotype. The 
top enrichment from our multi-tissue analysis of gene expression 
was validated at the system level for 33 of 34 phenotypes (Fig. 3a and 
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Supplementary Table 5), and the top enrichment of a tissue or cell 
type shared between GTEx and EN-TEx was validated at the tissue 
or cell-type level for 13 of 20 phenotypes, which increased to 16 with 
a more lenient definition (Supplementary Table  5 and Methods).  
In many instances, the analysis of chromatin data detected a greater 
number of enrichments, larger enrichments and/or enrichments at 
higher significance levels than the analysis of gene expression data, 
although this was not always the case (Supplementary Figs. 4 and 5, 
Supplementary Table 7 and Methods). The enrichment correlations 
in this analysis showed a similar pattern to that of the gene expres-
sion analysis above (Supplementary Fig. 6).

There is a long-standing scientific debate as to whether migraine 
has a primarily neurological or vascular basis45. We analyzed GWAS 
summary statistics for migraine with aura, migraine without aura, 
and migraine (all subtypes)16. The migraine (all subtypes) dataset 
contained the datasets for migraine with aura and for migraine with-
out aura, as well as data for a large number of additional subjects 
whose subtype was unknown. We found cardiovascular enrichments  

for migraine without aura with gene expression data, and for 
migraine without aura and migraine (all subtypes) with EN-TEx 
data, consistent with previous work16 (Fig.  3b). Our analysis of 
Roadmap data, however, yielded qualitatively different results—the 
strongest enrichment for migraine (all subtypes) was a neurologi-
cal enrichment. The top two annotations were neurospheres and 
fetal brain, neither of which was present in the gene expression data 
we analyzed nor in the EN-TEx dataset. The correlation in enrich-
ments between migraine (all subtypes) and migraine without aura 
in the gene expression analysis was estimated to be 0.48 (s.e. 0.15), 
whereas it was estimated to be 0.60 (s.e. 0.13) in the chromatin data. 
Our results are consistent with the hypothesis that migraine without 
aura does indeed have a vascular component, and that another sub-
type of migraine may have a neurological basis that is sufficiently 
cell-type specific that the relevant cell types are not represented in 
either the GTEx or Franke lab datasets. These results highlight the 
importance of having as many tissues and cell types as possible rep-
resented in a multiple-tissue analysis.
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Fig. 3 | Validation of gene expression results with chromatin data. a, Examples of validation using chromatin data (bottom) of results from gene 
expression data (top), for selected traits. Results using chromatin data for all traits are displayed in Supplementary Fig. 5, with numerical results presented 
in Supplementary Table 7. For the chromatin results, each circle represents a track of peaks for trimethylated lysine 4 on histone H3 (H3K4me3), 
monomethylated lysine 4 on histone H3 (H3K4me1), acetylated lysine 9 on histone H3 (H3K9ac), acetylated lysine 27 on histone H3 (H3K27ac), 
trimethylated lysine 36 on histone H3 (H3K36me3) or DHS in a single tissue or cell type. b, Results—using gene expression (including GTEx), Roadmap 
and EN-TEx data—for migraine (all subtypes) and migraine without aura. For each plot, the large circles pass the cutoff of FDR <​ 5% at either –log10 
(P) =​ 2.85 (chromatin) or –log10 (P) =​ 2.75 (gene expression). GWAS data are described in Supplementary Table 4, gene expression data and chromatin 
data are described in the Methods and in Supplementary Tables 2, 3 and 7, and the statistical method is described in the "Overview of methods" section 
above and the Methods.

Nature Genetics | VOL 50 | APRIL 2018 | 621–629 | www.nature.com/naturegenetics624

© 2018 Nature America Inc., part of Springer Nature. All rights reserved.

http://www.nature.com/naturegenetics


AnalysisNature Genetics

A major advantage of gene expression data is that it is available 
at finer tissue and cell-type resolution within several systems. In the 
within-system analyses that follow, we investigated these finer pat-
terns of tissue and cell-type specificity.

Analysis of 12 brain-related traits using fine-scale brain expres-
sion data. We identified 12 traits with central nervous system (CNS) 
enrichment at FDR <​ 5% in our gene expression and/or chroma-
tin analyses (Methods). We first investigated whether some brain 
regions were enriched relative to other brain regions for these traits 
using gene expression data from GTEx (Supplementary Fig. 7 and 
Methods). The results are displayed in Fig. 4a and Supplementary 
Table 8a. We identified significant enrichments in the cortex relative 
to other brain regions at FDR <​ 5% for bipolar disorder, schizophre-
nia, depressive symptoms and BMI, and in the striatum for migraine. 
These enrichments are consistent with our understanding of the 
biology of these traits46–49 but to our knowledge have not previously 
been reported in any integrative analysis using genetic data. We also 
identified enrichments in the cerebellum for bipolar disorder, years 
of education and BMI. However, we caution that differential gene 

expression in samples from different brain regions can reflect the 
cell type composition of these brain regions, as well as their func-
tion. In particular, the cerebellum is known to have a very high 
concentration of neurons50, and thus cerebellar enrichments could 
indicate either that the cerebellum is a region important in disease 
etiology or that neurons are an important cell type. Although many 
pairs of phenotypes had high estimated enrichment correlations in 
this analysis, migraine tended to have low enrichment correlations 
with other phenotypes (Supplementary Fig. 8); for example, the esti-
mated enrichment correlation between migraine and schizophrenia 
was 0.06 (s.e. 0.30), whereas the estimated enrichment correlation 
between bipolar disorder and schizophrenia was 0.96 (s.e. 0.05).

To address the question of the relative importance of brain cell 
types, as opposed to brain regions, we analyzed the same set of traits 
using a publicly available dataset of specifically expressed genes that 
were identified from different brain cell types purified from mouse 
forebrain19 (Methods). The results of this analysis are displayed in 
Fig. 4b and Supplementary Table 8b. We identified neuronal enrich-
ments at FDR <​ 5% for five traits: bipolar disorder, schizophrenia, 
years of education, BMI and neuroticism. The other cell types did not 
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exhibit significant enrichment for any of the 12 brain-related traits. 
The enrichment of neurons for all three of the traits with enrichment 
in cerebellum in the brain-region analysis supports the hypothesis that 
analyses of brain regions may be confounded by cell-type composition.

To more precisely characterize the neuronal enrichments, we 
analyzed the five traits with neuronal enrichment at FDR <​ 5% using 
t-statistics computed by the PsychENCODE consortium20 on dif-
ferential expression in glutamatergic (excitatory) versus GABAergic 
(inhibitory) neurons (Methods). The results are displayed in Fig. 4c 
and Supplementary Table 8c; we used Bonferroni correction in this 
analysis, as we were testing only 5 ×​ 2 =​ 10 hypotheses. For bipo-
lar disorder, genes that were specifically expressed in GABAergic 
neurons exhibited heritability enrichment, whereas genes that were 
specific to glutamatergic neurons did not. This result supports the 
theory that pathology in GABAergic neurons can contribute caus-
ally to risk for bipolar disorder51,52. For BMI and schizophrenia, 
however, we found significant enrichment in glutamatergic neurons 
but not in GABAergic neurons.

We were unable to validate the results of these analyses using 
independent chromatin data. For the two analyses of brain cell 
types, this was because we were not aware of any available datasets 
with analogous chromatin data. For the analysis of brain regions, 
this was because the chromatin annotations that we analyzed were 
highly correlated across different brain regions, and thus some phe-
notypes showed enrichment in nearly every brain region; we did not 
consider these nonspecific enrichments to be a meaningful valida-
tion of our region-specific results using gene expression data.

Analysis of 25 immune-related traits using immune cell expres-
sion data. We identified 25 traits with immune enrichment at 
FDR <​ 5% in our gene expression and/or chromatin analyses 
(Methods). We investigated cell-type-specific enrichments for 
these traits using gene expression data from the Immunological 
Genome (ImmGen) project21, which contains microarray data on 
292 immune cell types from mice (Methods). This dataset con-
tains data for many immune cell types that are not available in the 
multiple-tissue analysis, and because we compute t-statistics within 
the dataset—i.e., each immune cell versus other immune cells—the 
gene sets are less overlapping than those of immune cell types in the 
multiple-tissue analysis.

We identified enrichments at FDR <​ 5% for 16 traits. Results show 
highly trait-specific patterns of enrichment (Fig. 5, Supplementary 

Fig. 9 and Supplementary Tables 9 and 10). For primary biliary cir-
rhosis, the largest and most significant enrichment was in B cells, 
which was consistent with literature on the importance of B cells 
for this trait5354. Alzheimer’s disease exhibits enrichment in myeloid 
cells, as seen previously from genetics55,56. Asthma and eczema 
both exhibited enrichment in T cells and NKT cells; several sub-
classes of T cells have been shown to be important in asthma57, 
and a previous study using chromatin data found an enrichment in  
T cells for asthma but not in other immune cell types6. Rheumatoid 
arthritis, Crohn’s disease, inflammatory bowel disease and multiple 
sclerosis all exhibited enrichments in a variety of cell types, consis-
tent with complex etiologies for these diseases that involve many 
different immune cell types58–60. Schizophrenia and bipolar disor-
der both exhibited an enrichment in T cells. Patients with bipo-
lar disorder have been shown to have a reduction in certain types  
of T cells, but have equal levels of B cells, NK cells and monocytes, 
as compared to controls61. T cell levels have been shown to vary 
between individuals with schizophrenia and controls; however, the 
existing literature is not consistent in its description of the direc-
tion of effect62. Note that our analysis excluded the HLA region; a 
previous analysis of the HLA region for individuals with schizo-
phrenia implicated the complement system through its role in syn-
aptic pruning, a signal that is distinct from the signal we observed 
here63. Finally, we identified an enrichment in stromal cells for 
both diastolic and systolic blood pressure. For each of these two 
traits, we identified enrichments in the musculoskeletal–con-
nective category in the multiple-tissue analysis that were stron-
ger than the immune enrichments in that analysis, and thus we 
hypothesize that the enrichment in stromal cells does not provide 
better resolution on the immune enrichment but instead reflects  
the more general importance of connective tissue. In enrichment 
correlation analyses, schizophrenia and bipolar disorder clustered 
with immunological diseases, whereas metabolic traits, neurologi-
cal diseases and other psychiatric diseases did not (Supplementary 
Fig. 10).

To validate these results, we analyzed ATAC-seq (chromatin 
accessibility) data from 13 cell types that spanned the hematopoi-
etic hierarchy in humans64. We validated 10 of the 14 top results 
(Supplementary Table  9 and Methods). The only immunological 
disease whose result was not validated was lupus; the top result 
for lupus in the ImmGen analysis was a myeloid cell type, whereas 
the largest and most significant enrichment in the hematopoiesis  
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Fig. 5 |  Results of the immune analysis for selected traits. Results of the analysis of ImmGen gene expression data (top) and hematopoiesis ATAC-seq 
data (bottom) for selected traits (results for the remaining traits are displayed in Supplementary Fig. 9). Large circles passed the cutoff of FDR <​ 5% at 
either –log10 (P) =​ 3.03 (gene expression) or –log10 (P) =​ 2.32 (chromatin). Numerical results are reported in Supplementary Table 10, GWAS data are 
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method is described in the "Overview of methods" section above and the Methods.
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dataset was a B cell enrichment, which was consistent with other 
genetic studies of this trait14.

Discussion
We have shown that applying stratified LD score regression to sets 
of specifically expressed genes identifies disease-relevant tissues and 
cell types. Our approach, LDSC-SEG, allowed us to take advantage 
of the large amount of gene expression data available—including 
fine-grained data for which we currently do not have a compara-
ble chromatin counterpart—to ask questions ranging in resolution 
from whether a trait is brain related to whether excitatory or inhibi-
tory neurons are more important for disease etiology. Our results 
were able to improve understanding of the phenotypes studied 
here and to highlight the power of GWAS as a source of biological 
insight, and they may also be useful for choosing the relevant tissue 
or cell type for in vitro experiments to further elucidate the molecu-
lar mechanisms underlying significant loci across the genome that 
were identified in GWAS.

There are several key differences between LDSC-SEG, which 
relies on gene expression data without genotypes or eQTLs, and 
approaches that require eQTL data3,13 (Supplementary Fig.  11, 
Supplementary Note and Methods). Our polygenic approach also 
differs from other gene expression–based approaches such as 
SNPsea14,15 and DEPICT17, which restrict their analyses to subsets of 
SNPs that pass a significance threshold (Supplementary Figs. 12–16, 
Supplementary Tables 11–15 and Supplementary Note).

We cannot conclusively say whether gene expression or chromatin 
data are preferable when both types of data are available for the same 
tissues and cell types (Supplementary Figs. 4 and 17, Supplementary 
Tables 10 and 16, and Methods). Instead, we conclude that the ques-
tion of which type of data is preferable may depend on complex fac-
tors, such as which chromatin marks were analyzed, the sample size 
with which the specifically expressed genes are called and the overall 
quality of the dataset. When gene expression and chromatin data are 
available for the same set of tissues or cell types, it may be possible 
to combine these types of data to improve power—for example, by 
restricting an annotation to tissue-specific chromatin marks near 
specifically expressed genes or by combining the P values from sepa-
rate analyses of the two types of data. We defer a thorough explora-
tion of this set of possibilities to future work.

Our work is based on the assumption that a tissue or cell type 
is important for a particular disease if and only if SNPs near genes 
with high specific expression in that tissue or cell type are enriched 
for heritability. This assumption leads to several limitations of our 
approach. First, when analyzing gene expression data from different 
tissues, cell type composition can confound the analysis, as we dem-
onstrated in our comparison of brain regions; this makes enrich-
ments of organs such as the esophagus or uterus hard to interpret. 
Second, tissues or cell types with similar gene expression profiles 
to a causal tissue or cell type will be identified as being relevant to 
disease, just as SNPs in LD with a causal SNP will be identified as 
being associated with disease in a GWAS; thus, significant tissues or 
cell types should be cautiously interpreted as the ‘best proxy’ for the 
truly causal tissue or cell type, which may be unobserved. Third, our 
focus on nearby SNPs prevents us from leveraging signals from reg-
ulatory SNPs that function at longer distances. Our approach is also 
fundamentally limited by the availability of gene expression data 
and cannot rule out the importance of a given cell type; for example, 
if the tissue or cell type that is most relevant for a disease occurs in a 
stage of development or under a stimulus that has not been assayed, 
then we may not identify enrichments in that tissue or cell type. We 
would also like to highlight that for most of these phenotypes there 
is likely not just one causal tissue or cell type, but many.

Our use of a heritability-based approach has advantages but also 
leads to some limitations. First, our approach will not detect strong 
but highly localized signals. Second, power increases only modestly 

with sample size at very large sample sizes (Supplementary Note). 
Also, because our approach uses stratified LD score regression, it 
cannot be applied to custom array data; it requires a sequenced ref-
erence panel that matches the population studied in the GWAS and 
can be affected by model misspecification7. Recent augmentations 
to the baseline model65 have been shown to help ameliorate model 
misspecification, but we leave further investigation of this in the 
context of cell-type-specific analyses to future work.

Another limitation of our method is that its results may be dif-
ficult to validate. We undertook a type of validation using indepen-
dent chromatin data, when there were comparable chromatin data 
available. However, this type of validation involves a number of 
challenges. First, we often do not have chromatin data for the same 
tissues and cell types as the gene expression data. Second, it is not 
clear that we should always expect results to replicate; for example, it 
is biologically plausible that SNPs near specifically expressed genes 
in the relevant tissue are enriched, whereas SNPs in the trimethyl-
ated Lys36 of histone H3 (H3K36me3) peaks called in the tissue 
are not. Third, our gene expression annotations represent relative 
activity—we select genes that have higher expression in the focal tis-
sue than in other tissues—whereas the chromatin annotations that 
we use here represent absolute activity (although relative chromatin 
annotations are also possible6,66). Despite these limitations, replicat-
ing an enrichment for a particular system, tissue or cell type using 
independent chromatin data can provide strong validation for gene 
expression results.

Our power to identify disease-relevant tissues and cell types will 
improve as large GWAS sample sizes become available for more 
phenotypes, and as gene expression data are generated in new tis-
sues and cell types. This will help advance understanding of disease 
biology and lay the groundwork for future experiments exploring 
specific variants and mechanisms.

URLs. LDSC software on GitHub, including LDSC-SEG, https://
github.com/bulik/ldsc; gene sets and LD scores from this paper, 
https://data.broadinstitute.org/alkesgroup/LDSCORE/; GTEx, 
http://www.gtexportal.org/; Franke lab dataset, https://data.broadin-
stitute.org/mpg/depict/depict_download/tissue_expression; Cahoy 
et al. dataset (see Supplementary Tables 4–6), http://jneurosci.org/
content/suppl/2008/01/03/28.1.264.DC1; PsychENCODE, https://
www.synapse.org//#!Synapse:syn4921369/wiki/235539; ImmGen, 
https://www.immgen.org/; Roadmap Epigenomics, http://www.
roadmapepigenomics.org/; GERA dataset (database of Genotypes 
and Phenotypes (dbGaP), phs000674.v1.p1), http://www-ncbi-nlm-
nih-gov.libproxy.mit.edu/projects/gap/cgi-bin/study.cgi?study_id=​
phs000674.v1.p1; PLINK, https://www.cog-genomics.org/plink2; 
makegenes.sh, https://github.com/freeseek/gwaspipeline.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-018-0081-4.

Received: 19 September 2016; Accepted: 29 January 2018;  
Published online: 9 April 2018

References
	1.	 ENCODE Project Consortium. An integrated encyclopedia of DNA elements 

in the human genome. Nature 489, 57–74 (2012).
	2.	 Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. 

Nature 518, 317–330 (2015).
	3.	 GTEx Consortium. The Genotype–Tissue Expression (GTEx) pilot  

analysis: multi-tissue gene regulation in humans. Science 348,  
648–660 (2015).

	4.	 Ernst, J. et al. Mapping and analysis of chromatin-state dynamics in nine 
human cell types. Nature 473, 43–49 (2011).

	5.	 Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping 
complex trait variants. Nat. Genet. 45, 124–130 (2013).

Nature Genetics | VOL 50 | APRIL 2018 | 621–629 | www.nature.com/naturegenetics 627

© 2018 Nature America Inc., part of Springer Nature. All rights reserved.

https://github.com/bulik/ldsc
https://github.com/bulik/ldsc
https://data.broadinstitute.org/alkesgroup/LDSCORE/
http://www.gtexportal.org/
https://data.broadinstitute.org/mpg/depict/depict_download/tissue_expression
https://data.broadinstitute.org/mpg/depict/depict_download/tissue_expression
http://jneurosci.org/content/suppl/2008/01/03/28.1.264.DC1
http://jneurosci.org/content/suppl/2008/01/03/28.1.264.DC1
https://www.synapse.org//#!Synapse:syn4921369/wiki/235539
https://www.synapse.org//#!Synapse:syn4921369/wiki/235539
https://www.immgen.org/
http://www.roadmapepigenomics.org/
http://www.roadmapepigenomics.org/
http://www-ncbi-nlm-nih-gov.libproxy.mit.edu/projects/gap/cgi-bin/study.cgi?study_id=phs000674.v1.p1
http://www-ncbi-nlm-nih-gov.libproxy.mit.edu/projects/gap/cgi-bin/study.cgi?study_id=phs000674.v1.p1
http://www-ncbi-nlm-nih-gov.libproxy.mit.edu/projects/gap/cgi-bin/study.cgi?study_id=phs000674.v1.p1
https://www.cog-genomics.org/plink2
https://github.com/freeseek/gwaspipeline
https://doi.org/10.1038/s41588-018-0081-4
https://doi.org/10.1038/s41588-018-0081-4
http://www.nature.com/naturegenetics


Analysis Nature Genetics

	6.	 Farh, K. K.-H. et al. Genetic and epigenetic fine-mapping of causal 
autoimmune disease variants. Nature 518, 337–343 (2015).

	7.	 Finucane, H. K. et al. Partitioning heritability by functional annotation  
using genome-wide association summary statistics. Nat. Genet. 47,  
1228–1235 (2015).

	8.	 Li, Y. & Kellis, M. Joint Bayesian inference of risk variants and tissue-specific 
epigenomic enrichments across multiple complex human diseases. Nucleic 
Acids Res. 44, e144 (2016).

	9.	 Maurano, M. T. et al. Systematic localization of common disease-associated 
variation in regulatory DNA. Science 337, 1190–1195 (2012).

	10.	Pickrell, J. K. Joint analysis of functional genomic data and genome-wide 
association studies of 18 human traits. Am. J. Hum. Genet. 94,  
559–573 (2014).

	11.	Kichaev, G. et al. Integrating functional data to prioritize causal variants in 
statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014).

	12.	Gusev, A. et al. Partitioning heritability of regulatory and cell-type-specific 
variants across 11 common diseases. Am. J. Hum. Genet. 95, 535–552 (2014).

	13.	Ongen, H. et al. Estimating the causal tissues for complex traits and diseases. 
Nat. Genet. 49, 1676-1683 (2016).

	14.	Hu, X. et al. Integrating autoimmune risk loci with gene-expression data 
identifies specific pathogenic immune cell subsets. Am. J. Hum. Genet. 89, 
496–506 (2011).

	15.	Slowikowski, K., Hu, X. & Raychaudhuri, S. SNPsea: an algorithm to identify 
cell types, tissues and pathways affected by risk loci. Bioinformatics 30, 
2496–2497 (2014).

	16.	Gormley, P. et al. Meta-analysis of 375,000 individuals identifies 38 
susceptibility loci for migraine. Nat. Genet. 48, 856–866 (2016).

	17.	Pers, T. H. et al. Biological interpretation of genome-wide association studies 
using predicted gene functions. Nat. Commun. 6, 5890 (2015).

	18.	Fehrmann, R. S. N. et al. Gene expression analysis identifies global 
gene-dosage sensitivity in cancer. Nat. Genet. 47, 115–125 (2015).

	19.	Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons and 
oligodendrocytes: a new resource for understanding brain development and 
function. J. Neurosci. 28, 264–278 (2008).

	20.	Akbarian, S. et al. The PsychENCODE project. Nat. Neurosci. 18,  
1707–1712 (2015).

	21.	Heng, T. S. P. et al. The Immunological Genome Project: networks of gene 
expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

	22.	Auton, A. et al. A global reference for human genetic variation. Nature 526, 
68–74 (2015).

	23.	Sudlow, C. et al. UK Biobank: an open-access resource for identifying the 
causes of a wide range of complex diseases of middle and old age. PLoS Med. 
12, e1001779 (2015).

	24.	Anttila, V. et al. Analysis of shared heritability in common disorders of the 
brain. Preprint at bioRxiv https://doi.org/10.1101/048991 (2016).

	25.	Lambert, J.-C. et al. Meta-analysis of 74,046 individuals identifies 11 new 
susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458 (2013).

	26.	Cross-Disorder Group of the Psychiatric Genomics Consortium. Genetic 
relationship between five psychiatric disorders estimated from genome-wide 
SNPs. Nat. Genet. 45, 984–994 (2013).

	27.	International League Against Epilepsy Consortium on Complex Epilepsies. 
Genetic determinants of common epilepsies: a meta-analysis of genome-wide 
association studies. Lancet Neurol. 13, 893–903 (2014).

	28.	Woo, D. et al. Meta-analysis of genome-wide association studies identifies 
1q22 as a susceptibility locus for intracerebral hemorrhage. Am. J. Hum. 
Genet. 94, 511–521 (2014).

	29.	Traylor, M. et al. Genetic risk factors for ischemic stroke and its subtypes  
(the METASTROKE collaboration): a meta-analysis of genome-wide 
association studies. Lancet Neurol. 11, 951–962 (2012).

	30.	Patsopoulos, N. A. et al. Genome-wide meta-analysis identifies novel multiple 
sclerosis susceptibility loci. Ann. Neurol. 70, 897–912 (2011).

	31.	Nalls, M. A. et al. Large-scale meta-analysis of genome-wide association  
data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 46, 
989–993 (2014).

	32.	Schizophrenia Working Group of the Psychiatric Genomics Consortium. 
Biological insights from 108 schizophrenia-associated genetic loci. Nature 
511, 421–427 (2014).

	33.	Okbay, A. et al. Genome-wide association study identifies 74 loci associated 
with educational attainment. Nature 533, 539–542 (2016).

	34.	Okbay, A. et al. Genetic variants associated with subjective well-being, 
depressive symptoms and neuroticism identified through genome-wide 
analyses. Nat. Genet. 48, 624–633 (2016).

	35.	Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci 
for blood lipids. Nature 466, 707–713 (2010).

	36.	Schunkert, H. et al. Large-scale association analysis identifies 13 new 
susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).

	37.	Manning, A. K. et al. A genome-wide approach accounting for body mass 
index identifies genetic variants influencing fasting glycemic traits and insulin 
resistance. Nat. Genet. 44, 659–669 (2012).

	38.	Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and 
drug discovery. Nature 506, 376–381 (2014).

	39.	Jostins, L. et al. Host–microbe interactions have shaped the genetic 
architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

	40.	Bradfield, J. P. et al. A genome-wide meta-analysis of six type 1 diabetes 
cohorts identifies multiple associated loci. PLoS Genet. 7, e1002293 (2011).

	41.	Dubois, P. C. A. et al. Multiple common variants for celiac disease influencing 
immune gene expression. Nat. Genet. 42, 295–302 (2010).

	42.	Bentham, J. et al. Genetic association analyses implicate aberrant regulation 
of innate and adaptive immunity genes in the pathogenesis of systemic lupus 
erythematosus. Nat. Genet. 47, 1457–1464 (2015).

	43.	Cordell, H. J. et al. International genome-wide meta-analysis identifies  
new primary biliary cirrhosis risk loci and targetable pathogenic pathways. 
Nat. Commun. 6, 8019 (2015).

	44.	Wood, A. R. et al. Defining the role of common variation in the genomic  
and biological architecture of adult human height. Nat. Genet. 46,  
1173–1186 (2014).

	45.	Tfelt-Hansen, P. C. & Koehler, P. J. One hundred years of migraine research: 
major clinical and scientific observations from 1910 to 2010. Headache 51, 
752–778 (2011).

	46.	Hanford, L. C., Nazarov, A., Hall, G. B. & Sassi, R. B. Cortical thickness in 
bipolar disorder: a systematic review. Bipolar Disord. 18, 4–18 (2016).

	47.	Callicott, J. H. et al. Physiological dysfunction of the dorsolateral prefrontal 
cortex in schizophrenia revisited. Cereb. Cortex 10, 1078–1092 (2000).

	48.	Medic, N. et al. Increased body mass index is associated with specific regional 
alterations in brain structure. Int. J. Obes. 40, 1177–1182 (2016).

	49.	Maleki, N. et al. Migraine attacks the basal ganglia. Mol. Pain 7, 71 (2011).
	50.	Herculano-Houzel, S. & Lent, R. Isotropic fractionator: a simple, rapid 

method for the quantification of total cell and neuron numbers in the brain. 
J. Neurosci. 25, 2518–2521 (2005).

	51.	Sakai, T. et al. Changes in density of calcium-binding-protein-
immunoreactive GABAergic neurons in prefrontal cortex in schizophrenia 
and bipolar disorder. Neuropathology 28, 143–150 (2008).

	52.	Benes, F. M. & Berretta, S. GABAergic interneurons: implications for 
understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 
25, 1–27 (2001).

	53.	Dhirapong, A. et al. B cell depletion therapy exacerbates murine primary 
biliary cirrhosis. Hepatology 53, 527–535 (2011).

	54.	Zhang, J. et al. Ongoing activation of autoantigen-specific B cells in primary 
biliary cirrhosis. Hepatology 60, 1708–1716 (2014).

	55.	Raj, T. et al. Polarization of the effects of autoimmune and neurodegenerative 
risk alleles in leukocytes. Science 344, 519–523 (2014).

	56.	Huang, K. L. et al. A common haplotype lowers PU.1 expression  
in myeloid cells and delays onset of Alzheimer’s disease. Nat. Neurosci. 20, 
1052–1061 (2017).

	57.	Lloyd, C. M. & Hessel, E. M. Functions of T cells in asthma: more than just 
TH2 cells. Nat. Rev. Immunol. 10, 838–848 (2010).

	58.	Müller-Ladner, U., Pap, T., Gay, R. E., Neidhart, M. & Gay, S. Mechanisms of 
disease: the molecular and cellular basis of joint destruction in rheumatoid 
arthritis. Nat. Clin. Pract. Rheumatol. 1, 102–110 (2005).

	59.	Xavier, R. J. & Podolsky, D. K. Unravelling the pathogenesis of inflammatory 
bowel disease. Nature 448, 427–434 (2007).

	60.	Sospedra, M. & Martin, R. Immunology of multiple sclerosis. Annu. Rev. 
Immunol. 23, 683–747 (2005).

	61.	Barbosa, I. G., Machado-Vieira, R., Soares, J. C. & Teixeira, A. L.  
The immunology of bipolar disorder. Neuroimmunomodulation 21,  
117–122 (2014).

	62.	Steiner, J. et al. Acute schizophrenia is accompanied by reduced T cell  
and increased B cell immunity. Eur. Arch. Psychiatry Clin. Neurosci. 260, 
509–518 (2010).

	63.	Sekar, A. et al. Schizophrenia risk from complex variation of complement 
component 4. Nature 530, 177–183 (2016).

	64.	Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility 
charts human hematopoiesis and leukemia evolution. Nat. Genet. 48, 
1193–1203 (2016).

	65.	Gazal, S. et al. Linkage-disequilibrium-dependent architecture of human 
complex traits reveals action of negative selection. Nat. Genet. 49,  
1421–1427 (2017).

	66.	Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: 
from polygenic to omnigenic. Cell 169, 1177–1186 (2017).

Acknowledgements
We are thankful to R. Herbst, E. Hodis, F. Hormozdiari, M. Kanai, T. Pers, S. Riesenfeld, 
J. Ulirsch and A. Veres for helpful comments. This research was conducted using the  
UK Biobank Resource (application number: 16549). This research was funded by NIH 
grants R01 MH107649 (H.K.F., S.G., B.M.N., A.L.P.), R01 MH109978 (A.G., A.L.P.),  
U01 CA194393 (H.K.F., A.L.P.) and U01 HG009379 (S.R., A.L.P.). H.K.F. was also  
supported by the Fannie and John Hertz Foundation and by Eric and Wendy Schmidt. 
Data on neuron types were generated as part of the PsychENCODE Consortium, 

Nature Genetics | VOL 50 | APRIL 2018 | 621–629 | www.nature.com/naturegenetics628

© 2018 Nature America Inc., part of Springer Nature. All rights reserved.

https://doi.org/10.1101/048991
http://www.nature.com/naturegenetics


AnalysisNature Genetics

supported by: U01MH103392 (S. Akbarian, Icahn School of Medicine at Mount Sinai; 
P. Sklar, Icahn School of Medicine at Mount Sinai), U01MH103365 (F. Vaccarino, Yale 
University; M. Gerstein, Yale University; S. Weissman, Yale University), U01MH103346 
(P. Farnham, University of Southern California; J. A. Knowles, University of Southern 
California), U01MH103340 (C. Liu, SUNY Upstate Medical University; K. White, 
University of Chicago), U01MH103339 (N. Sestan, Yale University; M. State, University 
of California, San Francisco), R21MH109956 (A. Jaffe, Lieber Institute for Brain 
Development), R21MH105881 (D. Pinto, Icahn School of Medicine at Mount Sinai), 
R21MH105853 (A. Jaffe, Lieber Institute for Brain Development; D. Weinberger, 
Lieber Institute for Brain Development), R21MH103877 (S. Dracheva, Icahn School 
of Medicine at Mount Sinai; S. Akbarian, Icahn School of Medicine at Mount Sinai), 
R21MH102791 (A. Jaffe, Lieber Institute for Brain Development), R01MH111721  
(F. Goes, Johns Hopkins University; T. Hyde, Lieber Institute for Brain Development), 
R01MH110928 (M. State, University of California, San Francisco; S. Sanders, University 
of California, San Francisco; J. Willsey, University of California, San Francisco), 
R01MH110927 (D. Geschwind, University of California, Los Angeles), R01MH110926 
(N. Sestan, Yale University), R01MH110921 (P. Sklar, Icahn School of Medicine at Mount 
Sinai), R01MH110920 (C. Liu, SUNY Upstate Medical University), R01MH110905  
(K. White, University of Chicago), R01MH109715 (D. Pinto, Icahn School of Medicine 
at Mount Sinai), R01MH109677 (P. Roussos, Icahn School of Medicine at Mount Sinai), 
R01MH105898, (P. Zandi, Johns Hopkins University; T. M. Hyde, Lieber Institute for 

Brain Development), R01MH094714, (D. Geschwind, University of California, Los 
Angeles), P50MH106934, (N. Sestan, Yale University), R01MH105472 (G. Crawford, 
Duke University; P. Sullivan, University of North Carolina).

Author contributions
H.K.F. and A.L.P. designed the study; H.K.F., Y.A.R., K.S. and S.P. analyzed data; H.K.F. 
and A.L.P. wrote the manuscript with assistance from Y.A.R., V.A., K.S., A.G., A.B., S.G., 
P.-R.L., C.L., N.S., G.G., A.S., E.M., S.P., J.R.B.P., J.D.B., B.E.B., S.R., S.M. and B.M.N.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41588-018-0081-4.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to H.K.F. or A.L.P.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Nature Genetics | VOL 50 | APRIL 2018 | 621–629 | www.nature.com/naturegenetics 629

© 2018 Nature America Inc., part of Springer Nature. All rights reserved.

https://doi.org/10.1038/s41588-018-0081-4
https://doi.org/10.1038/s41588-018-0081-4
http://www.nature.com/reprints
http://www.nature.com/naturegenetics


Analysis Nature Genetics

Methods
Computing t-statistics. When computing the t-statistic of each gene for a focal 
tissue, we excluded all samples from a similar tissue category (described for each 
dataset below). For example, when computing the t-statistic of specific expression 
for each gene in the cortex using GTEx data, we compared expression in cortex 
samples to expression in all other samples, excluding other brain regions. We chose 
to exclude other brain regions because we wanted to include genes that were more 
highly expressed in brain tissues than in non-brain tissues, even if they were not 
specific to the cortex region within the brain. This procedure resulted in a higher 
correlation among the t-statistics for the different brain regions; in a separate 
analysis, we computed within-brain t-statistics to disentangle this signal.

Thus, for a focal tissue (for example, cortex) in a larger tissue category 
(for example, brain), we computed the t-statistic for gene g as follows. We first 
constructed a design matrix X, where each row corresponded to a sample that 
was either in the cortex or outside of the brain. The first column of X had a ‘1’ for 
every cortex sample and a ‘–1’ for every non-brain sample. The remaining columns 
were an intercept and covariates (see below). The outcome Y in our model was 
expression. We fit this model via ordinary least-squares and computed a t-statistic 
for the first explanatory variable in the standard way

=
⋅

−

−
t X X X Y

MSE X X

( ) [0]

( ) [0, 0]

T T

T

1

1

where MSE is the mean squared error of the fitted model; i.e.,

= − −
− −

MSE
N

Y X X X X Y Y X X X X Y1 ( ( ) ) ( ( ) )T T
T

T T1 1

where N is the number of rows in X. This gave us a t-statistic for each gene for the 
focal tissue. We then selected the top 10% of genes, added a 100-kb window around 
their transcribed regions, and applied stratified LD score regression to the resulting 
genome annotations as described below.

For visualization purposes and discussion of results, it is often useful to color 
tissues or cell types according to categories (categorization); the categorization for 
visualization is not always the same as the categorization for computing t-statistics. 
We gave the categorization for visualization in the Supplementary Tables listed in 
the respective figure captions.

Modifications of our approach. For some analyses, we modified our approach to 
constructing sets of specifically expressed genes to better take advantage of the data 
available.

Franke lab dataset. The values in the publicly available matrix are not a 
quantification of expression intensity, but rather a quantification of differential 
expression relative to other tissues in this dataset17,18. Thus, it was not appropriate 
to compute t-statistics in this dataset. We used the original values in place of our 
t-statistics, then proceeded as described in Fig. 1.

Cahoy dataset. The dataset of Cahoy et al.19 had available sets of specifically 
expressed genes for the three cell types that each had between 1,700 and 2,100 
genes. We took these to be the gene sets for the three cell types, then proceeded as 
in the standard approach, by adding a 100-kb window and applying stratified LD 
score regression.

PsychENCODE dataset. The PsychENCODE dataset had available t-statistics for 
GABAergic neurons versus glutamatergic neurons. We used these t-statistics, 
rather than computing our own.

Other datasets. For the other datasets we analyzed (GTEx, GTEx brain regions, 
ImmGen), we used the approach described in Fig. 1. We view it as an advantage of 
our method that it can be flexibly adapted to many different types of data.

Application of stratified LD score regression. Stratified LD score regression7 is 
a method for partitioning heritability. Given (potentially overlapping) genomic 
annotations …C C, , ,K1  one of which is the category of all SNPs, we modeled the 
causal effect of SNP j on phenotype Y as drawn from a distribution with mean 0 
and variance

∑β τ= ∈Var i C( ) 1{ } (1)i
k

k k

(If the genomic annotations are real-valued rather than subsets of SNPs, then 
we can replace ∈i C1{ }k  with any other function of the SNP indices65.) We then 
modeled the phenotype Y as depending linearly on genotype: Y =​ X  · β +​ ε, where 
X is a vector of SNP values for an individual, each SNP has been standardized to 
mean 0 and variance 1 in the population, and ε represents environmental effects 
and noise. Because each SNP is standardized, and because βi has a mean of 0, we 
can call βVar ( )i  the per-SNP heritability of SNP i. (Note that here, because we 

model β as random, our definition of heritability is different from definitions of 
heritability in which β is fixed; so, we are estimating a fundamentally different 
quantity than that in some other methods67.)

Under this model, the expected marginal Chi-square association statistic for 
SNP i reflects the causal contributions not only of SNP i but of SNPs in LD with 
SNP i. Specifically,

∑χ τ= + + ℓE Na N i k[ ] 1 ( , )i
k

k
2

where N is the GWAS sample size, a is a constant that reflects population structure 
and other sources of confounding68, and ℓ i k( , )  is the LD score of SNP i to category 
Ck, defined as ℓ = ∑ ∈i k r i j j C( , ) ( , )1{ }j k

2 , where r i j( , )2  is the squared correlation 
between SNPs i and j in the population. To estimate the τk, we first estimate ℓ i k( , )  
from a reference panel, and we then perform weighted regression χi

2 on ⋅ ℓN i k( , ) , 
using a jackknife over blocks of SNPs to estimate standard errors.

The regression coefficient τk quantifies the importance of annotation Ck,  
correcting for all other annotations in the model; τk will equal 0 if Ck is not 
enriched, will be negative if belonging to Ckdecreases per-SNP heritability 
accounting for all other annotations included, and will be positive if belonging to 
Ckincreases per-SNP heritability, accounting for all other factors. Thus, as in our 
previous cell-type-specific analysis7, we computed P values that tested whether τk 
was positive. When reporting quantitative results, we normalized the coefficient 
τk by our estimate of the mean per-SNP heritability β∑ ∕Var M( )i i  to make it 
comparable across phenotypes. The normalized coefficient can be interpreted 
as the proportion by which the per-SNP heritability of an average SNP would 
increase if τk were added to it. In addition, it is possible to estimate the total 
heritability, defined as β∑ Var ( )i i , as well as the heritability in category Ck, defined 
as β∑ ∈ Var ( )i C ik

, by plugging estimates of τk into equation 1, and to compare the 
proportion of heritability, β β∑ ∕ ∑∈ Var Var( ) ( )i C i i ik

, to the proportion of SNPs, 
∣ ∣ ∕C Mk , where M is the total number of SNPs7.

We analyzed autosomes only and excluded genes in the HLA region from 
all analyses. In each analysis, we jointly fit the following annotations: (i) the 
annotation created for our focal tissue by adding 100-kb windows around the top 
10% of genes ranked by t-statistic; (ii) an identical annotation created for all genes 
included in the gene expression dataset being analyzed; (iii) the baseline model 
with 52 functional categories, described previously7 and listed in Supplementary 
Table 1.

GTEx dataset. We downloaded the RNA sequencing (RNA-seq) read counts from 
GTEx v6p (see URLs), removed genes for which fewer than four samples had at 
least one read count per million, removed samples for which fewer than 100 genes 
had at least one read count per million, and applied transcripts per million (TPM) 
normalization69. We analyzed 53 tissues with an average of 161 samples per tissue. 
We used the ‘SMTSD’ variable (‘Tissue Type, more specific detail of tissue type’) 
to define our tissues and the ‘SMTS’ variable (‘Tissue Type, area from which the 
tissue sample was taken’) to define the tissue categories for t-statistic computation 
(Supplementary Table 2). We used age and sex as covariates for our t-statistics.

Franke lab dataset. The Franke lab dataset is an aggregation of publicly available 
microarray gene expression datasets comprising 37,427 human samples17,18. 
We downloaded the publicly available gene expression data from the DEPICT 
website (see URLs). The available gene expression values already quantify relative 
expression for a tissue or cell type rather than absolute expression for a single 
sample17,18, and so we used these values in place of our t-statistics. We determined 
that several pairs of tissues had values that were correlated at r2 >​ 0.99, including 
several that had r2 =​ 1. We pruned our data so that no two tissues had r2 >​ 0.99. 
Most of the closely correlated pairs were also biologically closely related so that 
the interpretation did not depend on which tissue we chose to keep (for example, 
plasma and plasma cells; joint and joint capsule). For pairs of tissues where one 
tissue was more specific than the second, we kept the more specific pair (for 
example, nose versus nasal mucosa; quadriceps muscle versus skeletal muscle). 
There were two clusters of highly correlated tissues for which we decided to 
remove the entire cluster, not keeping any of the tissues, because these clusters had 
very strong but biologically implausible correlations. The first such cluster was 
made up of eyelids, conjunctiva, anterior eye segment, tarsal bones, foot bones and 
bones of the lower extremity. The second such cluster was made up of connective 
tissue, bone and bones, skeleton and bone marrow. After pruning, this dataset 
contained 152 tissues, which are listed in Supplementary Table 3.

UK Biobank data. We analyzed summary statistics from the full N =​ 500,000 UK 
Biobank release23 for 13 traits generated using BOLT-LMM v2.370.

Enrichment correlation. For a pair of phenotypes and a set of tissue or cell types, 
we defined the enrichment correlation to be the correlation between the regression 
coefficients that corresponded to each tissue or cell type. We estimated the 
enrichment correlation by correlating the estimates of the regression coefficients, 
and we quantified uncertainty via block jackknife over 200 sets of consecutive 
SNPs. We note that when the number of tissues or cell types included is small, 
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the true underlying enrichment correlation may be large even though there is 
no relationship between the two phenotypes; so, we only estimate enrichment 
correlations when there are at least ten tissues or cell types.

Distribution of P values. The correlation structure among annotations can lead to 
a distribution of P values that is highly non-uniform with many P values close to  
0 or 1 (Fig. 2). This is caused by our one-sided test for enrichment, testing whether 
the regression coefficient—which represents the change in per-SNP heritability 
due to a given annotation, beyond what is explained by the set of all genes as well 
as the baseline model—is positive. The P values near 0 occur due to correlated 
annotations with true signal, and the P values near 1 occur due to annotations 
without true signal that, conditional on the baseline model, are negatively 
correlated to annotations with true signal as a consequence of our construction of 
sets of specifically expressed genes; these annotations thus have negative regression 
coefficients.

Chromatin-based annotations. We downloaded narrow peaks from the Roadmap 
Epigenomics consortium for DNase I hypersensitivity (DHS) and five activating 
histone marks (H3K27ac, H3K4me3, H3K4me1, H3K9ac and H3K36me3) (see 
URLs). Each of these six features was present in a subset of the 88 primary cell 
types or tissues, for a total of 397 cell-type- or tissue-specific annotations. We also 
analyzed peaks called using Homer from EN-TEx, a subgroup of the ENCODE 
project, for four activating histone marks (H3K27ac, H3K4m3, H3K4me1 and 
H3K36me3). Each of these four features was present in a subset of 27 tissues that 
were also included in the GTEx dataset, for a total of 93 cell-type- or tissue-specific 
annotations. For each of these two datasets, for each of the annotations, we tested 
for enrichment by adding the annotation to the baseline model (Supplementary 
Table 1), together with the union of cell-type-specific annotations within each 
mark and the average of cell-type-specific annotations within each mark. A positive 
regression coefficient for a tissue- or cell-type-specific annotation represents a 
positive contribution of the annotation to per-SNP heritability, conditional on the 
other annotations. We again computed a P value to test whether the regression 
coefficient was positive.

Our analysis of chromatin in this work differed from our previous analysis of 
chromatin data7 in three ways. First, we used a larger range of marks and of tissues 
or cell types: every track available from the Roadmap Epigenomics website (see 
URLs) for any of six activating marks (H3K27ac, H3K4me1, H3K4me3, H3K9ac, 
H3K36me3 and DHS) in any of the 88 primary tissues and cell types available, in 
addition to recent EN-TEx data. Second, for our analysis of Roadmap data, we 
used narrow peaks from Roadmap for all of the marks. Previously, we analyzed 
H3K27ac data from one source6 and H3K4me1, H3K4me3 and H3K9ac data from 
another source5,12; now that there was a single standard source with uniformly 
processed data for all of the Roadmap data, we switched to using these data. 
Finally, we controlled more strictly for confounders by including the average across 
cell types of the cell-type-specific annotations for a given mark as an annotation in 
the model, so that annotations that tended to fall in areas more active overall were 
not falsely interpreted as being a cell-type-specific signal.

Classification of tissues or cell types for system-level validation of the results 
of the multiple-tissue analysis of gene expression. We used the classification for 
visualization used in Fig. 2, classifying the top tissue or cell type for each trait with 
a significant enrichment into one of the eight systems (excluding “Other”) in the 
Fig. 2 legend. There were three phenotypes whose top tissue fell in the “Other” 
category; two of these we classified into a new “Reproductive” category. The last 
one, serous membrane, did not have any comparable tissues in our chromatin data, 
and we instead attempted to replicate the second most significant result for that 
phenotype.

Multiple-tissue validation results. The top enrichment from our multi-
tissue analysis of gene expression was validated at the system level for 33 of 
34 phenotypes, and at the tissue level for 13 of 20 (Results). If we allowed an 
enrichment of any artery sample in GTEx to be validated by an enrichment of 
any artery sample in EN-TEx (instead of requiring strict matching of aorta, tibial 
artery and coronary artery), then the number of validations increased from 13 to 
16. Of the four remaining results that were not validated, three were an enrichment 
in lung for an immunological disease; for all three diseases, the top enrichment 
in the analysis of gene expression (not restricting to tissues shared between 
GTEx and EN-TEx) was an immune category from the Franke lab dataset, and 
the top enrichment in the analysis of chromatin data was an immune category in 
the Roadmap dataset. We hypothesize that the lung samples analyzed in GTEx 
contained substantial amounts of blood and thus exhibited a gene expression 
signature reflecting immune activity; this idea is supported by a Gene Ontology 
(GO) enrichment analysis of the lung gene set, in which the top three results 
were related to antigen presentation, immune response and cytokine-mediated 
signaling, respectively.

Heritability enrichments of chromatin-based annotations. After aggregating all 
of the results of the Roadmap and EN-TEx chromatin analyses, we found at least 
one tissue that was significant at FDR <​ 5% for 44 of the 48 traits (Supplementary 

Fig. 5 and Supplementary Tables 5 and 7). Averaging across the most significant 
annotation for each of these 44 traits, we found that the tissue-specific chromatin 
annotation spanned 3.3% of the genome and explained 43% of the SNP heritability 
(Supplementary Table 5). The sizes of the annotation ranged from 0.8% to 7.8%, 
and the estimates of enrichment varied from 3.5 ×​ to 33 ×​ , which represented much 
more variability than for the top annotations in the multiple-tissue gene expression 
analysis. Because the annotations were much smaller, the estimates of proportion 
of heritability tended to be much noisier.

Phenotypes with CNS enrichment. The following 12 traits had CNS enrichment 
at FDR <​ 5% in either the multiple-tissue analysis of gene expression or in the 
analysis of chromatin data described above: schizophrenia, bipolar disorder, 
Tourette syndrome, epilepsy, generalized epilepsy, attention-deficit hyperactivity 
disorder (ADHD), migraine, depressive symptoms, BMI, smoking status, years of 
education and neuroticism. The nervous system has been implicated, either with 
genetic evidence or with non-genetic evidence, for each of these traits7,24,32,34,45,71–73.

Analysis of 13 brain regions using data from GTEx. Although the multiple-tissue 
analysis included annotations for many different brain regions, the gene sets for 
the different brain regions were often highly overlapping, so that for many traits, 
many brain regions were identified as being enriched. For example, nearly every 
brain region in either the GTEx or Franke lab data was found to be enriched at 
FDR <​ 5% in individuals with schizophrenia (Fig. 2). To differentiate among brain 
regions, we restricted ourselves to gene expression data from only samples from the 
brain in the GTEx data. We computed t-statistics within the brain-only dataset; for 
example, we computed t-statistics for cortex versus other brain regions instead of 
cortex versus other tissues in GTEx, and we used these new t-statistics to construct 
and test gene sets as in the multiple-tissue analysis. In this analysis, we set each 
tissue to be its own category for the computation of t-statistics, and we used age 
and sex as covariates. Individual-level data were not available for the Franke lab 
dataset, and thus we could not compute within-brain t-statistics for this dataset.

An alternative approach would be to undertake a joint analysis of the original 
13 annotations from the multiple-tissue analysis. However, joint analysis of 13 
highly correlated annotations is likely to be underpowered, whereas recomputing 
t-statistics within the brain allows us to construct new annotations with lower 
correlations (Supplementary Fig. 7), increasing our power. Moreover, differential 
expression within the brain may allow us to isolate signals from cell types or 
processes that are unique to a single brain region, separately from the cell types 
or processes that are unique to the brain but shared among brain regions. Thus, 
we used differential expression within the brain, rather than joint analysis of the 
original annotations, to differentiate among brain regions.

Data on three brain cell types from Cahoy et al. The authors of Cahoy et al.19 
purified neurons, astrocytes and oligodendrocytes from mouse forebrain and 
made lists of specifically expressed genes available for each of these three cell types, 
which we downloaded (see URLs). To obtain a list of all genes, we also downloaded 
a list of all of the genes that passed quality control in their analysis (Supplementary 
Table 3b in Cahoy et al.19). We mapped the mouse genes to human orthologs using 
Ensembl (see URLs).

Data on two neuron types from PsychENCODE. PsychENCODE20 generated 
RNA-seq data from the nuclei of GABAergic and glutamatergic neurons from the 
dorsolateral prefrontal cortex of four neurotypical human donors and computed 
t-statistics using limma74. We used these t-statistics.

Phenotypes with immune enrichment. Twenty-five traits had immune 
enrichment at FDR <​ 5% in either the multiple-tissue analysis of gene expression 
or in the analysis of chromatin data. This included many immunological disorders: 
celiac disease, Crohn’s disease, inflammatory bowel disease, lupus, primary biliary 
cirrhosis, rheumatoid arthritis, type 1 diabetes, ulcerative colitis, asthma, eczema 
and multiple sclerosis. It also included Alzheimer’s and Parkinson’s diseases, which 
are neurodegenerative diseases with an immune component that was previously 
identified from genetics75,76, as well as several brain-related traits—ADHD, anorexia 
nervosa, bipolar disorder, schizophrenia, Tourette syndrome and neuroticism—and 
high-density lipoprotein (HDL), LDL, triglycerides, diastolic and systolic blood 
pressure, hypertension and BMI. Several of the brain-related traits have previously 
been suggested to have an immune component32,77,78; HDL, LDL and triglycerides 
have been linked to immune activation79–82; immune cells are causally involved 
in blood pressure and hypertension83; and obesity, in addition to contributing to 
inflammation84, can also be induced in mice through alterations of the immune 
system85.

Data on 292 immune cell types from ImmGen. We downloaded publicly available 
microarray gene expression data on 292 immune cell types from the ImmGen 
Consortium (see URLs). We used both phase 1 (GSE15907) and phase 2  
(GSE37448) data. The data on Gene Expression Omnibus (GEO) were on an 
exponential scale, so we log-transformed the data and mapped it to human genes 
using ENSEMBL orthologs. We defined tissue categories for t-statistic computation 
using the classification on the main page of http://www.immgen.org of cell types 
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into categories: B cells, γ​δ​ T cells, α​β​ T cells, innate lymphocytes, myeloid cells, 
stromal cells and stem cells (Supplementary Table 10). The classification at  
http://www.immgen.org also has a ‘T cell activation’ category that we collapsed 
into the α​β​ T cell category because it had data on α​β​ T cells at different stages of 
activation. We did not include any covariates.

Validation of immune cell results. To validate the results of the ImmGen analysis, 
we analyzed ATAC-seq peaks from 13 cell types that spanned the hematopoietic 
hierarchy in humans64. The 13 cell types did not allow us to validate at a very 
high resolution; instead, we classified all of the cell types from ImmGen and 
from the hematopoiesis dataset using the classification for visualization of Fig. 5 
into five categories: B cells, T cells, NK cells, myeloid cells and other cells. There 
were no stromal cells in the hematopoiesis dataset, and it was not possible to 
validate the enrichments for diastolic and systolic blood pressure; this left us 
with 14 phenotypes with an enrichment at FDR <​ 5% in the ImmGen analysis for 
which the top result fell into one of the first four categories (excluding ‘Other’). 
We considered one of these 14 results to be validated if any cell type in the same 
category from the hematopoiesis dataset passed FDR <​ 5%. The four phenotypes 
whose top results did not replicate were lupus, schizophrenia, bipolar disorder  
and neuroticism.

Differences between LDSC-SEG and eQTL-based approaches. Our approach 
differs in several key ways from approaches that require eQTL data3,13. First, our 
approach can be applied to expression datasets such as the Franke lab dataset, the 
Cahoy dataset, the PsychENCODE dataset and the ImmGen dataset, which do not 
have genotypes or eQTLs available (Table 1). Second, methods based on eQTLs 
require gene expression sample sizes that are large enough to detect eQTLs. In 
an analysis of data from the GTEx project, we determined that we could identify 
strong enrichments, such as brain enrichment for schizophrenia, with just one 
brain sample, although subtler enrichments had decreasing levels of significance 
as the gene expression data were down-sampled (Supplementary Fig. 11 and 
Supplementary Note). Results from our analysis of ImmGen data, which has 2.8 
samples per cell type on average, confirm that LDSC-SEG can identify significant 
enrichments even when the gene expression data have a small number of samples 
per tissue or cell type, in contrast to that with eQTL-based methods. Finally, we 
note that a recent study86 tested 30 phenotypes for tissue-specific enrichment in 44 
tissues from GTEx using the TWAS approach87 but concluded that their results “did 
not suggest tissue-specific enrichment at the current sample sizes”. We share their 
hypothesis that this is because eQTLs are often shared across tissues even when 
overall expression levels are very different.

Comparison of gene expression and chromatin for cell-type-specific analysis. 
Our estimated enrichments were higher for the chromatin-based annotations 
than for the gene-expression-based annotations, but the gene-expression-based 
annotations were larger and had less LD to the rest of the genome. Some chromatin 
marks tend to be more cell type specific than overall gene expression, but our 
specifically expressed gene sets had low correlation across tissues (Supplementary 
Fig. 17). There were two instances in which we had gene expression and chromatin 
data on the same set of tissues or cell types, and we compared the P values in 
our analyses of these datasets. First, we compared our results from GTEx (gene 
expression) and EN-TEx (chromatin) for the tissues shared between these two 
datasets in the multiple-tissue analysis, and we found that the two datasets had 
comparable distributions of P values (Supplementary Fig. 4). In the second 
instance, the hematopoietic dataset that we analyzed64 had matched ATAC-seq and 
RNA-seq data, and although our analysis of the ATAC-seq peaks led to significant 
enrichments for many traits (Fig. 5 and Supplementary Table 10), the RNA-seq 
dataset yielded only a single enrichment for a single trait (Supplementary Table 16).

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Code availability. Open source software implementing our approach is available 
on Github (see URLs).

Data availability. We have released all genome annotations derived from the 
publicly available gene expression data that we analyzed (see URLs). This includes 
all annotations used in Figs. 2–5 with the exception of the annotations derived 
from the PsychENCODE data in Fig. 4c, for which we did not have permission to 
release annotations.
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promote consistency and transparency in reporting. All life sciences submissions use this form; while some list items might not apply to an individual 
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    Experimental design
1.   Sample size

Describe how sample size was determined. We analyzed available GWAS data, and did not do a new experiment in 
which we determined the sample size.

2.   Data exclusions

Describe any data exclusions. When computing t-statistics, we excluded samples from the same category 
as the focal tissue. We excluded the HLA from all analyses and analyzed 
only autosomes.

3.   Replication

Describe whether the experimental findings were reliably reproduced. There were no experimental findings. Where possible, we validated our 
computational results using gene expression data with chromatin data.

4.   Randomization

Describe how samples/organisms/participants were allocated into 
experimental groups.

We did not allocate samples into experimental groups.

5.   Blinding

Describe whether the investigators were blinded to group allocation 
during data collection and/or analysis.

There was no group allocation.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or the Methods 
section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample 
was measured repeatedly. 

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. p values) given as exact values whenever possible and with confidence intervals noted

A summary of the descriptive statistics, including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this study. We used the LDSC package, available on github. We also ran the SNPsea, 
MAGMA, and DEPICT software for comparison, using the 2016 versions of 
each tool.

For all studies, we encourage code deposition in a community repository (e.g. GitHub). Authors must make computer code available to editors and reviewers upon 
request.  The Nature Methods guidance for providing algorithms and software for publication may be useful for any submission.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of unique 
materials or if these materials are only available for distribution by a 
for-profit company.

N/A

9.   Antibodies

Describe the antibodies used and how they were validated for use in 
the system under study (i.e. assay and species).

N/A

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. N/A

b.  Describe the method of cell line authentication used. N/A

c.  Report whether the cell lines were tested for mycoplasma 
contamination.

N/A

d.  If any of the cell lines used in the paper are listed in the database 
of commonly misidentified cell lines maintained by ICLAC, 
provide a scientific rationale for their use.

N/A

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived materials used in 
the study.

N/A

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population characteristics of the 
human research participants.

N/A
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